Edward Gryspeerdt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4222744/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bounding Global Aerosol Radiative Forcing of Climate Change. Reviews of Geophysics, 2020, 58, e2019RG000660.	23.0	424
2	Constraining the aerosol influence on cloud fraction. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3566-3583.	3.3	129
3	Broad range of 2050 warming from an observationally constrained large climate model ensemble. Nature Geoscience, 2012, 5, 256-260.	12.9	109
4	Will a perfect model agree with perfect observations? The impact of spatial sampling. Atmospheric Chemistry and Physics, 2016, 16, 6335-6353.	4.9	108
5	Constraining the aerosol influence on cloud liquid water path. Atmospheric Chemistry and Physics, 2019, 19, 5331-5347.	4.9	104
6	On the spatio-temporal representativeness of observations. Atmospheric Chemistry and Physics, 2017, 17, 9761-9780.	4.9	84
7	Satellite observations of cloud regime development: the role of aerosol processes. Atmospheric Chemistry and Physics, 2014, 14, 1141-1158.	4.9	81
8	Regimeâ \in based analysis of aerosolâ \in cloud interactions. Geophysical Research Letters, 2012, 39, .	4.0	77
9	Constraining the instantaneous aerosol influence on cloud albedo. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4899-4904.	7.1	77
10	lce crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation. Atmospheric Chemistry and Physics, 2018, 18, 14327-14350.	4.9	61
11	Analysis of polarimetric satellite measurements suggests stronger cooling due to aerosol-cloud interactions. Nature Communications, 2019, 10, 5405.	12.8	55
12	Constraining the Twomey effect from satellite observations: issues and perspectives. Atmospheric Chemistry and Physics, 2020, 20, 15079-15099.	4.9	49
13	Wet scavenging limits the detection of aerosol effects on precipitation. Atmospheric Chemistry and Physics, 2015, 15, 7557-7570.	4.9	46
14	Uncertainty from the choice of microphysics scheme in convection-permitting models significantly exceeds aerosol effects. Atmospheric Chemistry and Physics, 2017, 17, 12145-12175.	4.9	46
15	Cloud fraction mediates the aerosol optical depthâ€cloud top height relationship. Geophysical Research Letters, 2014, 41, 3622-3627.	4.0	45
16	Opportunistic experiments to constrain aerosol effective radiative forcing. Atmospheric Chemistry and Physics, 2022, 22, 641-674.	4.9	44
17	Surprising similarities in model and observational aerosol radiative forcing estimates. Atmospheric Chemistry and Physics, 2020, 20, 613-623.	4.9	39
18	Links between satellite-retrieved aerosol and precipitation. Atmospheric Chemistry and Physics, 2014, 14, 9677-9694.	4.9	37

#	Article	IF	CITATIONS
19	lce crystal number concentration estimates from lidar–radar satellite remote sensing – PartÂ2: Controls on the ice crystal number concentration. Atmospheric Chemistry and Physics, 2018, 18, 14351-14370.	4.9	34
20	Community Intercomparison Suite (CIS) v1.4.0: a tool for intercomparing models and observations. Geoscientific Model Development, 2016, 9, 3093-3110.	3.6	33
21	The Impact of Ship Emission Controls Recorded by Cloud Properties. Geophysical Research Letters, 2019, 46, 12547-12555.	4.0	32
22	Assessment of simulated aerosol effective radiative forcings in the terrestrial spectrum. Geophysical Research Letters, 2017, 44, 1001-1007.	4.0	27
23	Observing the timescales of aerosol–cloud interactions in snapshot satellite images. Atmospheric Chemistry and Physics, 2021, 21, 6093-6109.	4.9	23
24	Climate impact of aircraft-induced cirrus assessed from satellite observations before and during COVID-19. Environmental Research Letters, 2021, 16, 064051.	5.2	21
25	Separating radiative forcing by aerosol–cloud interactions and rapid cloud adjustments in the ECHAM–HAMMOZ aerosol–climate model using the method of partial radiative perturbations. Atmospheric Chemistry and Physics, 2019, 19, 15415-15429.	4.9	16
26	The impact of sampling strategy on the cloud droplet number concentration estimated from satellite data. Atmospheric Measurement Techniques, 2022, 15, 3875-3892.	3.1	15
27	Stability-dependent increases in liquid water with droplet number in the Arctic. Atmospheric Chemistry and Physics, 2022, 22, 5743-5756.	4.9	9
28	Addressing the difficulties in quantifying droplet number response to aerosol from satellite observations. Atmospheric Chemistry and Physics, 2022, 22, 7353-7372.	4.9	9
29	An automated cirrus classification. Atmospheric Chemistry and Physics, 2018, 18, 6157-6169.	4.9	5
30	Meteorological Conditions Favorable for Strong Anthropogenic Aerosol Impacts on Clouds. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	2