
Gloria Patricia Cardona-Gomez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4222249/publications.pdf Version: 2024-02-01

Gloria Patricia

#	Article	IF	CITATIONS
1	The flavonoid quercetin ameliorates Alzheimer's disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer's disease model mice. Neuropharmacology, 2015, 93, 134-145.	2.0	334
2	Astrocytic modulation of blood brain barrier: perspectives on Parkinsonââ,¬â"¢s disease. Frontiers in Cellular Neuroscience, 2014, 8, 211.	1.8	321
3	Estradiol upregulates Bcl-2 expression in adult brain neurons. NeuroReport, 1998, 9, 593-597.	0.6	244
4	The Role of Astrocytes in Neuroprotection after Brain Stroke: Potential in Cell Therapy. Frontiers in Molecular Neuroscience, 2017, 10, 88.	1.4	201
5	Estradiol inhibits GSK3 and regulates interaction of estrogen receptors, GSK3, and beta-catenin in the hippocampus. Molecular and Cellular Neurosciences, 2004, 25, 363-373.	1.0	186
6	Interactions of estrogens and insulin-like growth factor-I in the brain: implications for neuroprotection. Brain Research Reviews, 2001, 37, 320-334.	9.1	152
7	Silencing of CDK5 Reduces Neurofibrillary Tangles in Transgenic Alzheimer's Mice. Journal of Neuroscience, 2010, 30, 13966-13976.	1.7	152
8	Insulin-like growth factor I receptors and estrogen receptors colocalize in female rat brain. Neuroscience, 2000, 99, 751-760.	1.1	143
9	Interactions of estrogen and insulin-like growth factor-I in the brain: molecular mechanisms and functional implications. Journal of Steroid Biochemistry and Molecular Biology, 2002, 83, 211-217.	1.2	109
10	Protection after stroke: cellular effectors of neurovascular unit integrity. Frontiers in Cellular Neuroscience, 2014, 8, 231.	1.8	108
11	Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice. Neuropharmacology, 2016, 102, 111-120.	2.0	105
12	Synergistic interaction of estradiol and insulin-like growth factor-I in the activation of PI3K/Akt signaling in the adult rat hypothalamus. Molecular Brain Research, 2002, 107, 80-88.	2.5	102
13	Insulin-like growth factor-I receptors and estrogen receptors interact in the promotion of neuronal survival and neuroprotection. Journal of Neurocytology, 2000, 29, 425-437.	1.6	90
14	CA1 Hippocampal Neuronal Loss in Familial Alzheimer's Disease Presenilin-1 E280A Mutation Is Related to Epilepsy. Epilepsia, 2004, 45, 751-756.	2.6	65
15	Sex Steroids and the Brain: Lessons from Animal Studies. Journal of Pediatric Endocrinology and Metabolism, 2000, 13, 1045-66.	0.4	64
16	Estradiol and progesterone regulate the expression of insulin-like growth factor-I receptor and insulin-like growth factor binding protein-2 in the hypothalamus of adult female rats. , 2000, 43, 269-281.		63
17	Preventive Effect of Quercetin in a Triple Transgenic Alzheimer's Disease Mice Model. Molecules, 2019, 24, 2287.	1.7	63
18	Estrogen receptors and insulin-like growth factor-I receptors mediate estrogen-dependent synaptic plasticity. NeuroReport, 2000, 11, 1735-1738.	0.6	58

#	Article	IF	CITATIONS
19	Neuroprotective activity and acetylcholinesterase inhibition of five Amaryllidaceae species: A comparative study. Life Sciences, 2015, 122, 42-50.	2.0	57
20	CDK5 Knockdown Prevents Hippocampal Degeneration and Cognitive Dysfunction Produced by Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1937-1949.	2.4	57
21	ROCK inhibition prevents tau hyperphosphorylation and p25/CDK5 increase after global cerebral ischemia Behavioral Neuroscience, 2011, 125, 465-472.	0.6	43
22	p120 catenin/αN atenin are molecular targets in the neuroprotection and neuronal plasticity mediated by atorvastatin after focal cerebral ischemia. Journal of Neuroscience Research, 2010, 88, 3621-3634.	1.3	42
23	Atorvastatin requires geranylgeranyl transferase-I and Rac1 activation to exert neuronal protection and induce plasticity. Neurochemistry International, 2013, 62, 433-445.	1.9	41
24	CDK5 knockdown in astrocytes provide neuroprotection as a trophic source via Rac1. Molecular and Cellular Neurosciences, 2015, 68, 151-166.	1.0	39
25	Role of Liver X Receptor in AD Pathophysiology. PLoS ONE, 2015, 10, e0145467.	1.1	36
26	Atorvastatin Modulates Regulatory T Cells and Attenuates Cerebral Damage in a Model of Transient Middle Cerebral Artery Occlusion in Rats. Journal of NeuroImmune Pharmacology, 2017, 12, 152-162.	2.1	33
27	Long- and short-term CDK5 knockdown prevents spatial memory dysfunction and tau pathology of triple transgenic Alzheimerââ,¬â"¢s mice. Frontiers in Aging Neuroscience, 2014, 6, 243.	1.7	32
28	p35 and Rac1 underlie the neuroprotection and cognitive improvement induced by CDK5 silencing. Journal of Neurochemistry, 2015, 134, 354-370.	2.1	32
29	Targeting CDK5 post-stroke provides long-term neuroprotection and rescues synaptic plasticity. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2208-2223.	2.4	31
30	Changes in the hippocampal and peripheral phospholipid profiles are associated with neurodegeneration hallmarks in a long-term global cerebral ischemia model: Attenuation by Linalool. Neuropharmacology, 2018, 135, 555-571.	2.0	31
31	GluN2B Nâ€methylâ€Dâ€aspartic acid receptor subunit mediates atorvastatinâ€Induced neuroprotection after focal cerebral ischemia. Journal of Neuroscience Research, 2014, 92, 1529-1548.	1.3	30
32	Inverse Phosphatidylcholine/Phosphatidylinositol Levels as Peripheral Biomarkers and Phosphatidylcholine/Lysophosphatidylethanolamine-Phosphatidylserine as Hippocampal Indicator of Postischemic Cognitive Impairment in Rats. Frontiers in Neuroscience, 2018, 12, 989.	1.4	30
33	CDK5 downregulation enhances synaptic plasticity. Cellular and Molecular Life Sciences, 2017, 74, 153-172.	2.4	28
34	Multifunctional magnetite nanoparticles to enable delivery of siRNA for the potential treatment of Alzheimer's. Drug Delivery, 2020, 27, 864-875.	2.5	28
35	Rac1 activity changes are associated with neuronal pathology and spatial memory long-term recovery after global cerebral ischemia. Neurochemistry International, 2010, 57, 762-773.	1.9	27
36	Liver X Receptor Agonist Modifies the DNA Methylation Profile of Synapse and Neurogenesis-Related Genes in the Triple Transgenic Mouse Model of Alzheimer's Disease. Journal of Molecular Neuroscience, 2016, 58, 243-253.	1.1	27

#	Article	IF	CITATIONS
37	Differential Pattern of Phospholipid Profile in the Temporal Cortex from E280A-Familiar and Sporadic Alzheimer's Disease Brains. Journal of Alzheimer's Disease, 2017, 61, 209-219.	1.2	27
38	LXR activation protects hippocampal microvasculature in very old triple transgenic mouse model of Alzheimer's disease. Neuroscience Letters, 2016, 621, 15-21.	1.0	25
39	Recovery of Neurovascular Unit Integrity by CDK5-KD Astrocyte Transplantation in a Global Cerebral Ischemia Model. Molecular Neurobiology, 2018, 55, 8563-8585.	1.9	24
40	Extracellular Vesicles From 3xTg-AD Mouse and Alzheimer's Disease Patient Astrocytes Impair Neuroglial and Vascular Components. Frontiers in Aging Neuroscience, 2021, 13, 593927.	1.7	24
41	Silencing of CDK5 as potential therapy for Alzheimer's disease. Reviews in the Neurosciences, 2011, 22, 143-52.	1.4	23
42	Cyclin-dependent kinase 5, a node protein in diminished tauopathy: a systems biology approach. Frontiers in Aging Neuroscience, 2014, 6, 232.	1.7	23
43	Comparative analysis of autophagy and tauopathy related markers in cerebral ischemia and Alzheimerââ,¬â"¢s disease animal models. Frontiers in Aging Neuroscience, 2015, 7, 84.	1.7	23
44	Neuroprotection Induced by Transplanted CDK5 Knockdown Astrocytes in Global Cerebral Ischemic Rats. Molecular Neurobiology, 2017, 54, 6681-6696.	1.9	22
45	Bexarotene therapy ameliorates behavioral deficits and induces functional and molecular changes in very-old Triple Transgenic Mice model of AlzheimerÂ's disease. PLoS ONE, 2019, 14, e0223578.	1.1	22
46	Amaryllidaceae alkaloids as agents with protective effects against oxidative neural cell injury. Life Sciences, 2018, 203, 54-65.	2.0	21
47	Cyclinâ€Dependent kinase 5 targeting prevents βâ€Amyloid aggregation involving glycogen synthase kinase 3β and phosphatases. Journal of Neuroscience Research, 2015, 93, 1258-1266.	1.3	20
48	BACE1 RNAi Restores the Composition of Phosphatidylethanolamine-Derivates Related to Memory Improvement in Aged 3xTg-AD Mice. Frontiers in Cellular Neuroscience, 2016, 10, 260.	1.8	20
49	Estrogen dissociates Tau and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit in postischemic hippocampus. NeuroReport, 2006, 17, 1337-1341.	0.6	19
50	β-Secretase 1's Targeting Reduces Hyperphosphorilated Tau, Implying Autophagy Actors in 3xTg-AD Mice. Frontiers in Cellular Neuroscience, 2015, 9, 498.	1.8	19
51	Effects of biflavonoids from Garcinia madruno on a triple transgenic mouse model of Alzheimer's disease. Pharmacological Research, 2018, 129, 128-138.	3.1	18
52	High fructose diet-induced obesity worsens post-ischemic brain injury in the hippocampus of female rats. Nutritional Neuroscience, 2022, 25, 122-136.	1.5	18
53	Neural differentiation of transplanted neural stem cells in a rat model of striatal lacunar infarction: light and electron microscopic observations. Frontiers in Cellular Neuroscience, 2012, 6, 30.	1.8	17
54	Differential Profile of Systemic Extracellular Vesicles From Sporadic and Familial Alzheimer's Disease Leads to Neuroglial and Endothelial Cell Degeneration. Frontiers in Aging Neuroscience, 2020, 12, 587989.	1.7	16

#	Article	IF	CITATIONS
55	Estradiol Upregulates Progesterone Receptor and Orphanin FQ Colocalization in Arcuate Nucleus Neurons and Opioid Receptor-Like Receptor-1 Expression in Proopiomelanocortin Neurons That Project to the Medial Preoptic Nucleus in the Female Rat. Neuroendocrinology, 2014, 100, 103-118.	1.2	15
56	Interactions of Insulin-Like Growth Factor-I and Estrogen in the Brain. , 2005, 567, 285-303.		14
57	Microglial-targeting induced by intranasal linalool during neurological protection postischemia. European Journal of Pharmacology, 2019, 857, 172420.	1.7	14
58	Decrease of Tau Hyperphosphorylation by 17β Estradiol Requires Sphingosine Kinase in a Glutamate Toxicity Model. Neurochemical Research, 2009, 34, 2206-2214.	1.6	12
59	Neuroprotection and improvement of the histopathological and behavioral impairments in a murine Alzheimer's model treated with Zephyranthes carinata alkaloids. Biomedicine and Pharmacotherapy, 2019, 110, 482-492.	2.5	12
60	Common disbalance in the brain parenchyma of dementias: Phospholipid profile analysis between CADASIL and sporadic Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165797.	1.8	12
61	Perspective of synaptic protection after post-infarction treatment with statins. Journal of Translational Medicine, 2015, 13, 118.	1.8	11
62	Beta-Secretase 1 Underlies Reactive Astrocytes and Endothelial Disruption in Neurodegeneration. Frontiers in Cellular Neuroscience, 2021, 15, 656832.	1.8	11
63	La atorvastatina protege las neuronas GABAérgicas y dopaminérgicas del sistema nigroestriatal en un modelo experimental de isquemia cerebral focal transitoria en ratas. Biomedica, 2013, 34, .	0.3	10
64	Dementia, Preclinical Studies in Neurodegeneration and its Potential for Translational Medicine in South America. Frontiers in Aging Neuroscience, 2016, 8, 304.	1.7	10
65	p120â€catenin is necessary for neuroprotection induced by <scp>CDK</scp> 5 silencing in models of Alzheimer's disease. Journal of Neurochemistry, 2016, 138, 624-639.	2.1	9
66	Targeting CDK5 in Astrocytes Promotes Calcium Homeostasis Under Excitotoxic Conditions. Frontiers in Cellular Neuroscience, 2021, 15, 643717.	1.8	7
67	Análisis comparativo de marcadores de lesión en modelos de isquemia cerebral focal y global en ratas. Biomedica, 2012, 33, .	0.3	6
68	Glycogen synthase kinaseâ€3β/βâ€catenin signaling in the rat hypothalamus during the estrous cycle. Journal of Neuroscience Research, 2012, 90, 1078-1084.	1.3	6
69	CDK5 Targeting as a Therapy for Recovering Neurovascular Unit Integrity in Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 82, S141-S161.	1.2	6
70	Down-regulation of Bcl-2 in rat substantia nigra after focal cerebral ischemia. NeuroReport, 2004, 15, 1437-1441.	0.6	5
71	Neurogenesis and gliogenesis modulation in cerebral ischemia by CDK5 RNAi-based therapy. Biomedica, 2018, 38, 388-397.	0.3	5
72	cPLA2 and desaturases underlie the tau hyperphosphorylation offset induced by BACE knock-down in neuronal primary cultures. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3696-3707.	1.8	4

#	Article	IF	CITATIONS
73	Considering risk factors for the effectiveness of translational therapies in brain stroke. Journal of the Neurological Sciences, 2020, 408, 116547.	0.3	2
74	Lasting metabolic effect of a high-fructose diet on global cerebral ischemia. Nutritional Neuroscience, 2022, 25, 1159-1172.	1.5	2
75	Amaryllidaceae alkaloids and neuronal cell protection. , 2020, , 135-144.		1
76	Gene Therapy for Cognitive Recovering After Ischemic Stroke. Springer Series in Translational Stroke Research, 2018, , 259-280.	0.1	1
77	Clial Cells are Involved in Organizational and Activational Effects of Sex Hormones in the Brain. , 1999, , .		1
78	Linalool as a therapeutic agent in neurodegeneration. Planta Medica, 2016, 81, S1-S381.	0.7	1
79	Terapia génica en enfermedades neurodegenerativas y demencia post infarto cerebral: perspectiva de traslación. Revista De La Academia Colombiana De Ciencias Exactas, Fisicas Y Naturales, 2017, 41, 6.	0.0	0