List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4222036/publications.pdf Version: 2024-02-01

SHUWELLANC

#	Article	IF	CITATIONS
1	Antifouling membranes for sustainable water purification: strategies and mechanisms. Chemical Society Reviews, 2016, 45, 5888-5924.	18.7	977
2	Nanostructured Ionâ€Exchange Membranes for Fuel Cells: Recent Advances and Perspectives. Advanced Materials, 2015, 27, 5280-5295.	11.1	335
3	Antifouling membrane surface construction: Chemistry plays a critical role. Journal of Membrane Science, 2018, 551, 145-171.	4.1	309
4	Efficient CO ₂ Capture by Functionalized Graphene Oxide Nanosheets as Fillers To Fabricate Multi-Permselective Mixed Matrix Membranes. ACS Applied Materials & Interfaces, 2015, 7, 5528-5537.	4.0	305
5	Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nature Communications, 2019, 10, 2101.	5.8	271
6	Two-dimensional nanochannel membranes for molecular and ionic separations. Chemical Society Reviews, 2020, 49, 1071-1089.	18.7	242
7	Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability. Journal of Membrane Science, 2019, 576, 131-141.	4.1	238
8	Pebax–PEG–MWCNT hybrid membranes with enhanced CO2 capture properties. Journal of Membrane Science, 2014, 460, 62-70.	4.1	223
9	A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine). Journal of Membrane Science, 2014, 470, 9-17.	4.1	214
10	Free-Standing Graphene Oxide-Palygorskite Nanohybrid Membrane for Oil/Water Separation. ACS Applied Materials & Interfaces, 2016, 8, 8247-8256.	4.0	214
11	Weakly Humidityâ€Dependent Protonâ€Conducting COF Membranes. Advanced Materials, 2020, 32, e2005565.	11.1	201
12	Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties. Journal of Membrane Science, 2014, 465, 78-90.	4.1	196
13	Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. Journal of Membrane Science, 2015, 490, 72-83.	4.1	194
14	A highly permeable graphene oxide membrane with fast and selective transport nanochannels for efficient carbon capture. Energy and Environmental Science, 2016, 9, 3107-3112.	15.6	192
15	2D Heterostructure Membranes with Sunlightâ€Driven Selfâ€Cleaning Ability for Highly Efficient Oil–Water Separation. Advanced Functional Materials, 2018, 28, 1706545.	7.8	182
16	Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers. Desalination, 2014, 333, 59-65.	4.0	177
17	Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. Journal of Membrane Science, 2017, 523, 185-196.	4.1	176
18	Biomimetic and bioinspired membranes: Preparation and application. Progress in Polymer Science, 2014, 39, 1668-1720.	11.8	174

#	Article	IF	CITATIONS
19	Hybrid membranes for pervaporation separations. Journal of Membrane Science, 2017, 541, 329-346.	4.1	174
20	Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes. Journal of Materials Chemistry A, 2019, 7, 25641-25649.	5.2	173
21	Organic molecular sieve membranes for chemical separations. Chemical Society Reviews, 2021, 50, 5468-5516.	18.7	170
22	Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property. Journal of Membrane Science, 2018, 553, 17-24.	4.1	166
23	Enhanced Interfacial Interaction and CO ₂ Separation Performance of Mixed Matrix Membrane by Incorporating Polyethylenimine-Decorated Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2015, 7, 1065-1077.	4.0	162
24	Solid–Vapor Interface Engineered Covalent Organic Framework Membranes for Molecular Separation. Journal of the American Chemical Society, 2020, 142, 13450-13458.	6.6	161
25	Zwitterionic polyethersulfone ultrafiltration membrane with superior antifouling property. Journal of Membrane Science, 2008, 319, 271-278.	4.1	159
26	Enhancing the CO ₂ separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. Journal of Materials Chemistry A, 2015, 3, 6629-6641.	5.2	152
27	Engineering amphiphilic membrane surfaces based on PEO and PDMS segments for improved antifouling performances. Journal of Membrane Science, 2014, 450, 111-123.	4.1	148
28	Fabrication of electro-neutral nanofiltration membranes at neutral pH with antifouling surface via interfacial polymerization from a novel zwitterionic amine monomer. Journal of Membrane Science, 2016, 503, 101-109.	4.1	126
29	Fabrication of composite nanofiltration membrane by incorporating attapulgite nanorods during interfacial polymerization for high water flux and antifouling property. Journal of Membrane Science, 2017, 544, 79-87.	4.1	121
30	Sulfonated poly(ether ether ketone)-based hybrid membranes containing graphene oxide with acid-base pairs for direct methanol fuel cells. Electrochimica Acta, 2016, 203, 178-188.	2.6	113
31	Incorporating Zwitterionic Graphene Oxides into Sodium Alginate Membrane for Efficient Water/Alcohol Separation. ACS Applied Materials & Interfaces, 2016, 8, 2097-2103.	4.0	113
32	Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution. Journal of Membrane Science, 2016, 520, 583-595.	4.1	107
33	Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles. Journal of Membrane Science, 2017, 540, 454-463.	4.1	107
34	Membraneâ€Based Olefin/Paraffin Separations. Advanced Science, 2020, 7, 2001398.	5.6	105
35	Metal-coordinated sub-10 nm membranes for water purification. Nature Communications, 2019, 10, 4160	5.8	104
36	Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation. Journal of Materials Chemistry A, 2018, 6, 583-591.	5.2	103

#	Article	IF	CITATIONS
37	Tunable Nanochannels along Graphene Oxide/Polymer Core–Shell Nanosheets to Enhance Proton Conductivity. Advanced Functional Materials, 2015, 25, 7502-7511.	7.8	97
38	Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration. Journal of Materials Chemistry A, 2020, 8, 23930-23938.	5.2	95
39	Surface fluorination of polyamide nanofiltration membrane for enhanced antifouling property. Journal of Membrane Science, 2014, 455, 15-23.	4.1	90
40	Multifunctional covalent organic framework (COF)-Based mixed matrix membranes for enhanced CO2 separation. Journal of Membrane Science, 2021, 618, 118693.	4.1	88
41	Preparation of ultrathin, robust membranes through reactive layer-by-layer (LbL) assembly for pervaporation dehydration. Journal of Membrane Science, 2017, 537, 229-238.	4.1	87
42	Polydopamine-modulated covalent organic framework membranes for molecular separation. Journal of Materials Chemistry A, 2019, 7, 18063-18071.	5.2	86
43	SPEEK/amine-functionalized TiO2 submicrospheres mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2014, 467, 23-35.	4.1	84
44	Bioinspired Ultrastrong Solid Electrolytes with Fast Proton Conduction along 2D Channels. Advanced Materials, 2017, 29, 1605898.	11.1	81
45	Scalable Fabrication of Crystalline COF Membranes from Amorphous Polymeric Membranes. Angewandte Chemie - International Edition, 2021, 60, 18051-18058.	7.2	81
46	Highly water-selective membranes based on hollow covalent organic frameworks with fast transport pathways. Journal of Membrane Science, 2018, 565, 331-341.	4.1	73
47	Mixed Nanosheet Membranes Assembled from Chemically Grafted Graphene Oxide and Covalent Organic Frameworks for Ultra-high Water Flux. ACS Applied Materials & Interfaces, 2019, 11, 28978-28986.	4.0	72
48	Fabrication of Nafion/zwitterion-functionalized covalent organic framework composite membranes with improved proton conductivity. Journal of Membrane Science, 2018, 568, 1-9.	4.1	70
49	Graphene quantum dots engineered nanofiltration membrane for ultrafast molecular separation. Journal of Membrane Science, 2019, 572, 504-511.	4.1	69
50	Facilitating Proton Transport in Nafion-Based Membranes at Low Humidity by Incorporating Multifunctional Graphene Oxide Nanosheets. ACS Applied Materials & Interfaces, 2017, 9, 27676-27687.	4.0	67
51	Creation of active-passive integrated mechanisms on membrane surfaces for superior antifouling and antibacterial properties. Journal of Membrane Science, 2018, 548, 621-631.	4.1	67
52	Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration membranes. IScience, 2021, 24, 102369.	1.9	67
53	Engineering amphiphilic nanofiltration membrane surfaces with a multi-defense mechanism for improved antifouling performances. Journal of Materials Chemistry A, 2016, 4, 7892-7902.	5.2	66
54	Fabrication of hybrid membranes by incorporating acid–base pair functionalized hollow mesoporous silica for enhanced proton conductivity. Journal of Materials Chemistry A, 2015, 3, 16079-16088.	5.2	63

#	Article	IF	CITATIONS
55	Janus composite nanoparticle-incorporated mixed matrix membranes for CO 2 separation. Journal of Membrane Science, 2015, 489, 1-10.	4.1	62
56	Covalent Organic Framework Nanosheets as Reactive Fillers To Fabricate Free-Standing Polyamide Membranes for Efficient Desalination. ACS Applied Materials & Interfaces, 2020, 12, 27777-27785.	4.0	62
57	Heterostructured filler in mixed matrix membranes to coordinate physical and chemical selectivities for enhanced CO2 separation. Journal of Membrane Science, 2018, 567, 272-280.	4.1	60
58	BrÃ,nsted acid mediated covalent organic framework membranes for efficient molecular separation. Journal of Materials Chemistry A, 2019, 7, 20317-20324.	5.2	58
59	Ultrathin Membranes for Separations: A New Era Driven by Advanced Nanotechnology. Advanced Materials, 2022, 34, e2108457.	11.1	58
60	Bioadhesion-inspired polymer–inorganic nanohybrid membranes with enhanced CO2 capture properties. Journal of Materials Chemistry, 2012, 22, 19617.	6.7	57
61	Water-selective permeation in hybrid membrane incorporating multi-functional hollow ZIF-8 nanospheres. Journal of Membrane Science, 2018, 555, 146-156.	4.1	57
62	Manipulation of interactions at membrane interfaces for energy and environmental applications. Progress in Polymer Science, 2018, 80, 125-152.	11.8	56
63	Graphene oxide quantum dots incorporated nanocomposite membranes with high water flux for pervaporative dehydration. Journal of Membrane Science, 2018, 563, 903-913.	4.1	55
64	<i>110th Anniversary:</i> Mixed Matrix Membranes with Fillers of Intrinsic Nanopores for Gas Separation. Industrial & Engineering Chemistry Research, 2019, 58, 7706-7724.	1.8	54
65	Enhanced pervaporative performance of hybrid membranes containing Fe3O4@CNT nanofillers. Journal of Membrane Science, 2015, 492, 230-241.	4.1	50
66	Control of Edge/in-Plane Interactions toward Robust, Highly Proton Conductive Graphene Oxide Membranes. ACS Nano, 2019, 13, 10366-10375.	7.3	50
67	In situ construction of chemically heterogeneous hydrogel surfaces toward near-zero-flux-decline membranes for oil-water separation. Journal of Membrane Science, 2020, 594, 117455.	4.1	50
68	Amino-functionalized NUS-8 nanosheets as fillers in PIM-1 mixed matrix membranes for CO2 separations. Journal of Membrane Science, 2022, 641, 119912.	4.1	50
69	Ultrapermeable graphene oxide membranes with tunable interlayer distances <i>via</i> vein-like supramolecular dendrimers. Journal of Materials Chemistry A, 2019, 7, 18642-18652.	5.2	48
70	Graphene oxide membranes with fixed interlayer distance via dual crosslinkers for efficient liquid molecular separations. Journal of Membrane Science, 2020, 595, 117486.	4.1	47
71	Ultrathin polyamide nanofiltration membranes with tunable chargeability for multivalent cation removal. Journal of Membrane Science, 2022, 642, 119971.	4.1	47
72	Modulating interfacial polymerization with phytate as aqueous-phase additive for highly-permselective nanofiltration membranes. Journal of Membrane Science, 2022, 657, 120673.	4.1	47

#	Article	IF	CITATIONS
73	Superwetting membranes: from controllable constructions to efficient separations. Journal of Materials Chemistry A, 2021, 9, 1395-1417.	5.2	46
74	Bimetallic metal-organic frameworks nanocages as multi-functional fillers for water-selective membranes. Journal of Membrane Science, 2018, 545, 19-28.	4.1	44
75	Ultrathin heterostructured covalent organic framework membranes with interfacial molecular sieving capacity for fast water-selective permeation. Journal of Materials Chemistry A, 2020, 8, 19328-19336.	5.2	43
76	Significantly enhanced CO2 capture properties by synergy of zinc ion and sulfonate in Pebax-pitch hybrid membranes. Journal of Membrane Science, 2018, 549, 670-679.	4.1	41
77	Porous organosilicon nanotubes in pebax-based mixed-matrix membranes for biogas purification. Journal of Membrane Science, 2019, 573, 301-308.	4.1	41
78	2D layered double hydroxide membranes with intrinsic breathing effect toward CO2 for efficient carbon capture. Journal of Membrane Science, 2020, 598, 117663.	4.1	41
79	Thermal-facilitated interfacial polymerization toward high-performance polyester desalination membrane. Journal of Materials Chemistry A, 2021, 9, 8470-8479.	5.2	40
80	Enhancing the permeation selectivity of sodium alginate membrane by incorporating attapulgite nanorods for ethanol dehydration. RSC Advances, 2016, 6, 14381-14392.	1.7	38
81	A highly conductive and robust anion conductor obtained <i>via</i> synergistic manipulation in intra- and inter-laminate of layered double hydroxide nanosheets. Journal of Materials Chemistry A, 2018, 6, 10277-10285.	5.2	38
82	Exfoliation-free layered double hydroxides laminates intercalated with amino acids for enhanced CO2 separation of mixed matrix membrane. Journal of Membrane Science, 2021, 618, 118691.	4.1	38
83	Embedding hydrophobic MoS 2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration. Chemical Engineering Science, 2018, 185, 231-242.	1.9	35
84	Hierarchical pore architectures from 2D covalent organic nanosheets for efficient water/alcohol separation. Journal of Membrane Science, 2018, 561, 79-88.	4.1	33
85	Incorporating arginine-FeIII complex into polyamide membranes for enhanced water permeance and antifouling performance. Journal of Membrane Science, 2020, 602, 117980.	4.1	33
86	Three-dimensional covalent organic framework membrane for efficient proton conduction. Journal of Materials Chemistry A, 2021, 9, 17720-17723.	5.2	32
87	Ultrathin fluorinated self-cleaning membranes <i>via</i> coordination-driven metal-bridging assembly for water purification. Journal of Materials Chemistry A, 2020, 8, 4505-4514.	5.2	31
88	Incorporating covalent organic framework nanosheets into polyamide membranes for efficient desalination. Separation and Purification Technology, 2021, 274, 119046.	3.9	31
89	Construction of graphene oxide membrane through non-covalent cross-linking by sulfonated cyclodextrin for ultra-permeable butanol dehydration. Journal of Membrane Science, 2021, 621, 118938.	4.1	30
90	Conferring efficient alcohol dehydration to covalent organic framework membranes via post-synthetic linker exchange. Journal of Membrane Science, 2021, 630, 119319.	4.1	30

#	Article	IF	CITATIONS
91	Mix-charged polyamide membranes via molecular hybridization for selective ionic nanofiltration. Journal of Membrane Science, 2022, 644, 120051.	4.1	29
92	Quaternary ammonium engineered polyamide membrane with high positive charge density for efficient Li+/Mg2+separation. Journal of Membrane Science, 2022, 659, 120802.	4.1	29
93	Construction of molecule-selective mixed matrix membranes with confined mass transfer structure. Chinese Journal of Chemical Engineering, 2017, 25, 1563-1580.	1.7	27
94	In-situ construction of antifouling separation layer via a reaction enhanced surface segregation method. Chemical Engineering Science, 2018, 190, 89-97.	1.9	27
95	A facile metal ion pre-anchored strategy for fabrication of defect-free MOF membranes on polymeric substrates. Journal of Membrane Science, 2022, 650, 120419.	4.1	27
96	Enhanced dehydration performance of hybrid membranes by incorporating lanthanide-based MOFs. Journal of Membrane Science, 2018, 546, 31-40.	4.1	26
97	Weakly pressure-dependent molecular sieving of propylene/propane mixtures through mixed matrix membrane with ZIF-8 direct-through channels. Journal of Membrane Science, 2022, 648, 120366.	4.1	26
98	Preparation of Antifouling Nanofiltration Membrane via Interfacial Polymerization of Fluorinated Polyamine and Trimesoyl Chloride. Industrial & Engineering Chemistry Research, 2015, 54, 8302-8310.	1.8	25
99	Constructing channel-mediated facilitated transport membranes by incorporating covalent organic framework nanosheets with tunable microenvironments. Journal of Materials Chemistry A, 2019, 7, 9912-9923.	5.2	25
100	Loosening ultrathin polyamide nanofilms through alkali hydrolysis for high-permselective nanofiltration. Journal of Membrane Science, 2021, 637, 119623.	4.1	25
101	Electrostatic enhanced surface segregation approach to self-cleaning and antifouling membranes for efficient molecular separation. Journal of Membrane Science, 2021, 638, 119689.	4.1	25
102	A nonionic polymer-brush-grafted PVDF membrane to analyse fouling during the filtration of oil/water emulsions. Journal of Membrane Science, 2021, 637, 119644.	4.1	25
103	Ultrathin nanofiltration membrane assembled by polyethyleneimine-grafted graphene quantum dots. Journal of Membrane Science, 2022, 642, 119944.	4.1	25
104	One-pot synthesis of silica–titania binary nanoparticles with acid–base pairs via biomimetic mineralization to fabricate highly proton-conductive membranes. Journal of Materials Chemistry A, 2017, 5, 18585-18593.	5.2	24
105	Engineering multi-pathway graphene oxide membranes toward ultrafast water purification. Journal of Membrane Science, 2021, 638, 119706.	4.1	24
106	Incorporating amino acids functionalized graphene oxide nanosheets into Pebax membranes for CO2 separation. Separation and Purification Technology, 2022, 288, 120682.	3.9	23
107	Anionic covalent organic framework engineered high-performance polyamide membrane for divalent anions removal. Journal of Membrane Science, 2022, 650, 120451.	4.1	22
108	Oil/water separation membranes with a fluorine island structure for stable high flux. Journal of Materials Chemistry A, 2021, 9, 6905-6912.	5.2	19

#	Article	IF	CITATIONS
109	Heterostructured graphene oxide membranes with tunable water-capture coatings for highly selective water permeation. Journal of Materials Chemistry A, 2021, 9, 7903-7912.	5.2	18
110	Vapor-liquid interfacial polymerization of covalent organic framework membranes for efficient alcohol dehydration. Journal of Membrane Science, 2022, 641, 119905.	4.1	18
111	Sulfonated lignin intercalated graphene oxide membranes for efficient proton conduction. Journal of Membrane Science, 2022, 644, 120126.	4.1	17
112	Tuning the pore size of graphene quantum dots composite nanofiltration membranes by P-aminobenzoic acid for enhanced dye/salt separation. Separation and Purification Technology, 2021, 263, 118372.	3.9	16
113	Graphene oxide membranes tuned by metal-phytic acid coordination complex for butanol dehydration. Journal of Membrane Science, 2021, 638, 119736.	4.1	16
114	Supramolecular Calix[<i>n</i>]arenes-Intercalated Graphene Oxide Membranes for Efficient Proton Conduction. ACS Applied Materials & Interfaces, 2019, 11, 42250-42260.	4.0	15
115	Pervaporation dehydration of an acetone/water mixture by hybrid membranes incorporated with sulfonated carbon molecular sieves. RSC Advances, 2016, 6, 55272-55281.	1.7	14
116	Enhanced dehydration performance of hybrid membranes by incorporating fillers with hydrophilic-hydrophobic regions. Chemical Engineering Science, 2018, 178, 273-283.	1.9	13
117	Plasticization- and aging-resistant membranes with venation-like architecture for efficient carbon capture. Journal of Membrane Science, 2020, 609, 118215.	4.1	12
118	Fouling-resistant robust membranes via electrostatic complexation for water purification. Chemical Engineering Journal, 2021, 416, 129139.	6.6	11
119	Perfluorooctanoyl chloride engineering toward high-flux antifouling polyamide nanofilms for desalination. Journal of Membrane Science, 2022, 644, 120166.	4.1	10
120	Charged nanochannels endow COF membrane with weakly concentration-dependent methanol permeability. Journal of Membrane Science, 2022, 645, 120186.	4.1	10
121	Microstructure Manipulation of Covalent Organic Frameworks (COFs)-based Membrane for Efficient Separations. Chemical Research in Chinese Universities, 2022, 38, 325-338.	1.3	10
122	Hybrid membranes with 2D vertical continuous channels from layered double hydroxides array for high-efficiency ethanol dehydration. Journal of Membrane Science, 2022, 643, 120040.	4.1	9
123	In-situ construction of water capture layer through reaction enhanced surface segregation for pervaporation desalination. Journal of Membrane Science, 2022, 658, 120708.	4.1	9
124	Vertically oriented Fe3O4 nanoflakes within hybrid membranes for efficient water/ethanol separation. Journal of Membrane Science, 2021, 620, 118916.	4.1	8
125	Highly permeable and antioxidative graphene oxide membranes for concentration of hydrogen peroxide aqueous solution. Journal of Membrane Science, 2022, 643, 120036.	4.1	8