Adrian Rothenfluh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4221829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Use of Drosophila to Understand Psychostimulant Responses. Biomedicines, 2022, 10, 119.	3.2	8
2	Chloride oscillation in pacemaker neurons regulates circadian rhythms through a chloride-sensing WNK kinase signaling cascade. Current Biology, 2022, 32, 1429-1438.e6.	3.9	8
3	Optimized assay for transposase-accessible chromatin by sequencing (ATAC-seq) library preparation from adult Drosophila melanogaster neurons. Scientific Reports, 2022, 12, 6043.	3.3	5
4	Harnessing changes in open chromatin determined by ATAC-seq to generate insulin-responsive reporter constructs. BMC Genomics, 2022, 23, .	2.8	11
5	The fly liquid-food electroshock assay (FLEA) suggests opposite roles for neuropeptide F in avoidance of bitterness and shock. BMC Biology, 2021, 19, 31.	3.8	5
6	From single flies to many genes: Using Drosophila to explore the genetics of psychostimulant consumption. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2109994118.	7.1	1
7	Flying Together: Drosophila as a Tool to Understand the Genetics of Human Alcoholism. International Journal of Molecular Sciences, 2020, 21, 6649.	4.1	19
8	The Neurotransmitters Involved in Drosophila Alcohol-Induced Behaviors. Frontiers in Behavioral Neuroscience, 2020, 14, 607700.	2.0	21
9	New alcohol-related genes suggest shared genetic mechanisms with neuropsychiatric disorders. Nature Human Behaviour, 2019, 3, 950-961.	12.0	75
10	Altered Actin Filament Dynamics in the <i>Drosophila</i> Mushroom Bodies Lead to Fast Acquisition of Alcohol Consumption Preference. Journal of Neuroscience, 2019, 39, 8877-8884.	3.6	14
11	JmjC domain proteins modulate circadian behaviors and sleep in Drosophila. Scientific Reports, 2018, 8, 815.	3.3	30
12	Dopaminergic rules of engagement for memory in Drosophila. Current Opinion in Neurobiology, 2017, 43, 56-62.	4.2	33
13	Alcoholâ€Induced Behaviors Require a Subset of <i>Drosophila</i> JmjCâ€Domain Histone Demethylases in the Nervous System. Alcoholism: Clinical and Experimental Research, 2017, 41, 2015-2024.	2.4	20
14	Systematic discovery of genetic modulation by Jumonji histone demethylases in Drosophila. Scientific Reports, 2017, 7, 5240.	3.3	38
15	Neural basis of reward anticipation and its genetic determinants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3879-3884.	7.1	53
16	I Believe I Can Fly!: Use of Drosophila as a Model Organism in Neuropsychopharmacology Research. Neuropsychopharmacology, 2016, 41, 1439-1446.	5.4	28
17	S6 Kinase Reflects and Regulates Ethanol-Induced Sedation. Journal of Neuroscience, 2015, 35, 15396-15402.	3.6	19
18	RhoGAP18B Isoforms Act on Distinct Rho-Family GTPases and Regulate Behavioral Responses to Alcohol via Cofilin, PLoS ONE, 2015, 10, e0137465.	2.5	14

Adrian Rothenfluh

#	Article	IF	CITATIONS
19	Rsu1 regulates ethanol consumption in <i>Drosophila</i> and humans. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4085-93.	7.1	57
20	Longâ€lasting, experienceâ€dependent alcohol preference in <scp><i>D</i></scp> <i>rosophila</i> . Addiction Biology, 2014, 19, 392-401.	2.6	53
21	The Genetics of Alcohol Responses of Invertebrate Model Systems. , 2014, , 467-495.		5
22	Emerging roles of actin cytoskeleton regulating enzymes in drug addiction: actin or reactin'?. Current Opinion in Neurobiology, 2013, 23, 507-512.	4.2	35
23	The role of the actin cytoskeleton in regulating Drosophila behavior. Reviews in the Neurosciences, 2013, 24, 471-84.	2.9	13
24	Normal dynactin complex function during synapse growth in <i>Drosophila</i> requires membrane binding by Arfaptin. Molecular Biology of the Cell, 2013, 24, 1749-1764.	2.1	15
25	Alcohol and Drosophila melanogaster. , 2013, , 51-59.		1
26	Adult Neuronal Arf6 Controls Ethanol-Induced Behavior with Arfaptin Downstream of Rac1 and RhoGAP18B. Journal of Neuroscience, 2012, 32, 17706-17713.	3.6	30
27	A Simple Way to Measure Ethanol Sensitivity in Flies. Journal of Visualized Experiments, 2011, , .	0.3	23
28	Systematic Discovery of Rab GTPases with Synaptic Functions in Drosophila. Current Biology, 2011, 21, 1704-1715.	3.9	122
29	The Genetics of Behavioral Alcohol Responses in Drosophila. International Review of Neurobiology, 2010, 91, 25-51.	2.0	59
30	Addiction: Flies Hit the Skids. Current Biology, 2009, 19, R1110-R1111.	3.9	1
31	Distinct Behavioral Responses to Ethanol Are Regulated by Alternate RhoGAP18B Isoforms. Cell, 2006, 127, 199-211.	28.9	115
32	Drugs, flies, and videotape: the effects of ethanol and cocaine on Drosophila locomotion. Current Opinion in Neurobiology, 2002, 12, 639-645.	4.2	72
33	Phosphorylation of PERIOD Is Influenced by Cycling Physical Associations of DOUBLE-TIME, PERIOD, and TIMELESS in the Drosophila Clock. Neuron, 2001, 30, 699-706.	8.1	160
34	Short-period mutations of per affect a double-time-dependent step in the Drosophila circadian clock. Current Biology, 2000, 10, 1399-1402.	3.9	80
35	A TIMELESS-Independent Function for PERIOD Proteins in the Drosophila Clock. Neuron, 2000, 26, 505-514.	8.1	149
36	Isolation and Analysis of Six <i>timeless</i> Alleles That Cause Short- or Long-Period Circadian Rhythms in Drosophila. Genetics, 2000, 156, 665-675.	2.9	85

#	Article	IF	CITATIONS
37	Siesta-Time Is in the Genes. Neuron, 1999, 24, 4-5.	8.1	9
38	double-time Is a Novel Drosophila Clock Gene that Regulates PERIOD Protein Accumulation. Cell, 1998, 94, 83-95.	28.9	775
39	The Drosophila Clock Gene double-time Encodes a Protein Closely Related to Human Casein Kinase Iε. Cell, 1998, 94, 97-107.	28.9	664