Matthew E Suss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4221673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Internet of Things enabled environmental condition monitoring driven by laser ablated reduced graphene oxide based Al-air fuel cell. Journal of Power Sources, 2022, 521, 230938.	4.0	6
2	Emerging investigator series: a comparison of strong and weak-acid functionalized carbon electrodes in capacitive deionization. Environmental Science: Water Research and Technology, 2022, 8, 949-956.	1.2	4
3	Chloride-Tolerant, Inexpensive Fe/N/C Catalysts for Desalination Fuel Cell Cathodes. ACS Applied Energy Materials, 2022, 5, 1743-1754.	2.5	5
4	Spatial variations of pH in electrodialysis stacks: Theory. Electrochimica Acta, 2022, 413, 140151.	2.6	7
5	Modelling the fluid mechanics in single-flow batteries with an adjacent channel for improved reactant transport. Flow, 2022, 2, .	1.0	Ο
6	Single-flow multiphase flow batteries: Experiments. Journal of Power Sources, 2022, 540, 231567.	4.0	4
7	Predicting ion selectivity in water purification by capacitive deionization: Electric double layer models. Current Opinion in Colloid and Interface Science, 2022, 60, 101602.	3.4	10
8	Single-flow multiphase flow batteries: Theory. Electrochimica Acta, 2021, 389, 138554.	2.6	7
9	Carbon electrodes for capacitive technologies. Energy Storage Materials, 2019, 16, 126-145.	9.5	214
10	Water Desalination with Energy Storage Electrode Materials. Joule, 2018, 2, 10-15.	11.7	217
11	Theory of Flow Batteries with Fast Homogeneous Chemical Reactions. Journal of the Electrochemical Society, 2018, 165, A3820-A3827.	1.3	16
12	A one-dimensional model for water desalination by flow-through electrode capacitive deionization. Desalination, 2017, 415, 8-13.	4.0	82
13	Enhanced performance stability of carbon/titania hybrid electrodes during capacitive deionization of oxygen saturated saline water. Electrochimica Acta, 2017, 224, 314-328.	2.6	98
14	Suspension Electrodes Combining Slurries and Upflow Fluidized Beds. ChemSusChem, 2016, 9, 3045-3048.	3.6	31
15	MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. Journal of Materials Chemistry A, 2016, 4, 18265-18271.	5.2	358
16	Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization. Journal of Materials Chemistry A, 2016, 4, 3642-3647.	5.2	140
17	Theory of Water Desalination by Porous Electrodes with Immobile Chemical Charge. Colloids and Interface Science Communications, 2015, 9, 1-5.	2.0	119
18	Scalable and Continuous Water Deionization by Shock Electrodialysis. Environmental Science and Technology Letters, 2015, 2, 367-372.	3.9	78

MATTHEW E SUSS

#	Article	IF	CITATIONS
19	Water desalination via capacitive deionization: what is it and what can we expect from it?. Energy and Environmental Science, 2015, 8, 2296-2319.	15.6	1,273
20	Water purification by shock electrodialysis: Deionization, filtration, separation, and disinfection. Desalination, 2015, 357, 77-83.	4.0	101
21	Impedance-based study of capacitive porous carbon electrodes with hierarchical and bimodal porosity. Journal of Power Sources, 2013, 241, 266-273.	4.0	82
22	Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes. Physical Chemistry Chemical Physics, 2013, 15, 2309.	1.3	79
23	Capacitive desalination with flow-through electrodes. Energy and Environmental Science, 2012, 5, 9511.	15.6	334
24	Advanced carbon aerogels for energy applications. Energy and Environmental Science, 2011, 4, 656.	15.6	576
25	Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part II: Coupling between ion mobility, electrolysis, and acid–base equilibria. Lab on A Chip, 2009, 9, 2454.	3.1	94
26	Scaling Up the Simultaneous Production of Clean Electricity and Clean Water. Journal of the Electrochemical Society, 0, , .	1.3	0