
Charles A Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4221646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrically evoked single-fiber action potentials from cat: responses to monopolar, monophasic stimulation. Hearing Research, 1999, 130, 197-218.	2.0	130
2	Response Properties of the Refractory Auditory Nerve Fiber. , 2001, 2, 216-232.		120
3	The clinical application of potentials evoked from the peripheral auditory system. Hearing Research, 2008, 242, 184-197.	2.0	105
4	An Improved Method of Reducing Stimulus Artifact in the Electrically Evoked Whole-Nerve Potential. Ear and Hearing, 2000, 21, 280-290.	2.1	103
5	Channel Interaction in Cochlear Implant Users Evaluated Using the Electrically Evoked Compound Action Potential. Audiology and Neuro-Otology, 2004, 9, 203-213.	1.3	102
6	Electrically evoked compound action potentials of guinea pig and cat: responses to monopolar, monophasic stimulation. Hearing Research, 1998, 119, 142-154.	2.0	96
7	Auditory nerve responses to monophasic and biphasic electric stimuli. Hearing Research, 2001, 151, 79-94.	2.0	87
8	Changes Across Time in Spike Rate and Spike Amplitude of Auditory Nerve Fibers Stimulated by Electric Pulse Trains. JARO - Journal of the Association for Research in Otolaryngology, 2007, 8, 356-372.	1.8	84
9	Analysis of monophasic and biphasic electrical stimulation of nerve. IEEE Transactions on Biomedical Engineering, 2001, 48, 1065-1070.	4.2	70
10	Effects of Electrode-to-Fiber Distance on Temporal Neural Response With Electrical Stimulation. IEEE Transactions on Biomedical Engineering, 2004, 51, 13-20.	4.2	68
11	Electrode configuration influences action potential initiation site and ensemble stochastic response properties. Hearing Research, 2003, 175, 200-214.	2.0	61
12	Changes Across Time in the Temporal Responses of Auditory Nerve Fibers Stimulated by Electric Pulse Trains. JARO - Journal of the Association for Research in Otolaryngology, 2008, 9, 122-137.	1.8	59
13	The use of long-duration current pulses to assess nerve survival. Hearing Research, 1994, 78, 11-26.	2.0	56
14	Functional responses from guinea pigs with cochlear implants. I. Electrophysiological and psychophysical measures. Hearing Research, 1995, 92, 85-99.	2.0	53
15	The neuronal response to electrical constant-amplitude pulse train stimulation: evoked compound action potential recordings. Hearing Research, 2000, 149, 115-128.	2.0	49
16	Electrical Excitation of the Acoustically Sensitive Auditory Nerve: Single-Fiber Responses to Electric Pulse Trains. JARO - Journal of the Association for Research in Otolaryngology, 2006, 7, 195-210.	1.8	49
17	How do cochlear prostheses work?. Current Opinion in Neurobiology, 1999, 9, 399-404.	4.2	48
18	The effects of interpulse interval on stochastic properties of electrical stimulation: models and measurements. IEEE Transactions on Biomedical Engineering, 2001, 48, 416-424.	4.2	47

CHARLES A MILLER

#	Article	IF	CITATIONS
19	An empirically based model of the electrically evoked compound action potential. Hearing Research, 1999, 135, 1-18.	2.0	45
20	Intracochlear and extracochlear ECAPs suggest antidromic action potentials. Hearing Research, 2004, 198, 75-86.	2.0	44
21	Spiral ganglion cell site of excitation I: Comparison of scala tympani and intrameatal electrode responses. Hearing Research, 2006, 215, 10-21.	2.0	40
22	Electrically evoked auditory brainstem response to stimulation of different sites in the cochlea. Hearing Research, 1993, 66, 130-142.	2.0	39
23	Design, analysis and simulation for development of the first clinical micro-CT scanner1. Academic Radiology, 2005, 12, 511-525.	2.5	35
24	The Dependence of Auditory Nerve Rate Adaptation on Electric Stimulus Parameters, Electrode Position, and Fiber Diameter: A Computer Model Study. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 283-296.	1.8	35
25	The neuronal response to electrical constant-amplitude pulse train stimulation: additive Gaussian noise. Hearing Research, 2000, 149, 129-137.	2.0	32
26	Functional responses from guinea pigs with cochlear implants II. Changes in electrophysiological and psychophysical measures over time. Hearing Research, 1995, 92, 100-111.	2.0	30
27	Biophysical Model of an Auditory Nerve Fiber With a Novel Adaptation Component. IEEE Transactions on Biomedical Engineering, 2009, 56, 2177-2180.	4.2	29
28	Auditory response to intracochlear electric stimuli following furosemide treatment. Hearing Research, 2003, 185, 77-89.	2.0	28
29	Simulation of the Electrically Stimulated Cochlear Neuron: Modeling Adaptation to Trains of Electric Pulses. IEEE Transactions on Biomedical Engineering, 2009, 56, 1348-1359.	4.2	28
30	Neural Masking by Sub-threshold Electric Stimuli: Animal and Computer Model Results. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 219-232.	1.8	27
31	Characterization of wave I of the electrically evoked auditory brainstem response in the guinea pig. Hearing Research, 1993, 69, 35-44.	2.0	23
32	Auditory Nerve Fiber Responses to Combined Acoustic and Electric Stimulation. JARO - Journal of the Association for Research in Otolaryngology, 2009, 10, 425-445.	1.8	22
33	Acoustic–electric interactions in the guinea pig auditory nerve: Simultaneous and forward masking of the electrically evoked compound action potential. Hearing Research, 2007, 232, 87-103.	2.0	21
34	Response of the auditory nerve to sinusoidal electrical stimulation: effects of high-rate pulse trains. Hearing Research, 2004, 194, 1-13.	2.0	19
35	Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains. Hearing Research, 2005, 202, 141-153.	2.0	19
36	Co-administration of kanamycin and ethacrynic acid as a deafening method for acute animal experiments. Hearing Research, 2004, 187, 131-133.	2.0	15

CHARLES A MILLER

#	Article	IF	CITATIONS
37	Intracochlear Electrical Stimulation Suppresses Apoptotic Signaling in Rat Spiral Ganglion Neurons after Deafening in Vivo. Otolaryngology - Head and Neck Surgery, 2013, 149, 745-752.	1.9	15
38	Changes in Auditory Nerve Responses Across the Duration of Sinusoidally Amplitude-Modulated Electric Pulse-Train Stimuli. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 641-656.	1.8	14
39	Electrically Evoked Auditory Steady-State Responses in Guinea Pigs. Audiology and Neuro-Otology, 2007, 12, 101-112.	1.3	12
40	Feasibility of using silicon-substrate recording electrodes within the auditory nerve. Hearing Research, 2004, 198, 48-58.	2.0	10
41	Effects of temporal properties on compound action potentials in response to amplitude-modulated electric pulse trains in guinea pigs. Hearing Research, 2009, 247, 47-59.	2.0	10
42	Biophysics and Physiology. Springer Handbook of Auditory Research, 2004, , 149-212.	0.7	9
43	Electrically Evoked Auditory Steady-State Responses in a Guinea Pig Model: Latency Estimates and Effects of Stimulus Parameters. Audiology and Neuro-Otology, 2008, 13, 161-171.	1.3	7
44	Binaural interactions of electrically and acoustically evoked responses recorded from the inferior colliculus of guinea pigs. International Journal of Audiology, 2007, 46, 309-320.	1.7	6
45	Improved noise reduction in single fiber auditory neural responses using template subtraction. Journal of Neuroscience Methods, 2006, 155, 319-327.	2.5	2