Daniel P Kelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4221079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. Journal of Clinical Investigation, 2006, 116, 615-622.	3.9	1,193
2	Peroxisome proliferator–activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. Journal of Clinical Investigation, 2000, 106, 847-856.	3.9	1,120
3	The Coactivator PGC-1 Cooperates with Peroxisome Proliferator-Activated Receptor α in Transcriptional Control of Nuclear Genes Encoding Mitochondrial Fatty Acid Oxidation Enzymes. Molecular and Cellular Biology, 2000, 20, 1868-1876.	1.1	1,025
4	Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGCâ€1. FASEB Journal, 2002, 16, 1879-1886.	0.2	857
5	PGC-1α Deficiency Causes Multi-System Energy Metabolic Derangements: Muscle Dysfunction, Abnormal Weight Control and Hepatic Steatosis. PLoS Biology, 2005, 3, e101.	2.6	817
6	Transcriptional integration of mitochondrial biogenesis. Trends in Endocrinology and Metabolism, 2012, 23, 459-466.	3.1	641
7	Fatty Acid Oxidation Enzyme Gene Expression Is Downregulated in the Failing Heart. Circulation, 1996, 94, 2837-2842.	1.6	574
8	The Failing Heart Relies on Ketone Bodies as a Fuel. Circulation, 2016, 133, 698-705.	1.6	506
9	A critical role for PPARÂ-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: Modulation by dietary fat content. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1226-1231.	3.3	478
10	The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. Journal of Clinical Investigation, 2002, 109, 121-130.	3.9	458
11	Estrogen-Related Receptor α Directs Peroxisome Proliferator-Activated Receptor α Signaling in the Transcriptional Control of Energy Metabolism in Cardiac and Skeletal Muscle. Molecular and Cellular Biology, 2004, 24, 9079-9091.	1.1	436
12	Peroxisome Proliferator-activated Receptor Coactivator-1α (PGC-1α) Coactivates the Cardiac-enriched Nuclear Receptors Estrogen-related Receptor-α and -γ. Journal of Biological Chemistry, 2002, 277, 40265-40274.	1.6	435
13	Mitochondrial energy metabolism in heart failure: a question of balance. Journal of Clinical Investigation, 2005, 115, 547-555.	3.9	433
14	Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. Journal of the American College of Cardiology, 2002, 40, 271-277.	1.2	432
15	Deactivation of peroxisome proliferator–activated receptor-α during cardiac hypertrophic growth. Journal of Clinical Investigation, 2000, 105, 1723-1730.	3.9	428
16	Fatty Acids Activate Transcription of the Muscle Carnitine Palmitoyltransferase I Gene in Cardiac Myocytes via the Peroxisome Proliferator-activated Receptor α. Journal of Biological Chemistry, 1998, 273, 23786-23792.	1.6	425
17	Nuclear Receptor Signaling and Cardiac Energetics. Circulation Research, 2004, 95, 568-578.	2.0	412
18	Genome-wide Orchestration of Cardiac Functions by the Orphan Nuclear Receptors ERRα and γ. Cell Metabolism, 2007, 5, 345-356.	7.2	373

#	Article	lF	CITATIONS
19	Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes and Development, 2015, 29, 1981-1991.	2.7	356
20	Cardiac-Specific Induction of the Transcriptional Coactivator Peroxisome Proliferator-Activated Receptor 13 Coactivator-11± Promotes Mitochondrial Biogenesis and Reversible Cardiomyopathy in a Developmental Stage-Dependent Manner. Circulation Research, 2004, 94, 525-533.	2.0	352
21	Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science, 2015, 350, aad2459.	6.0	342
22	Inherited Cardiomyopathies. New England Journal of Medicine, 1994, 330, 913-919.	13.9	295
23	Transcriptional coactivators PGC-1α and PGC-lβ control overlapping programs required for perinatal maturation of the heart. Genes and Development, 2008, 22, 1948-1961.	2.7	280
24	Nuclear receptors PPARβ/δ and PPARα direct distinct metabolic regulatory programs in the mouse heart. Journal of Clinical Investigation, 2007, 117, 3930-9.	3.9	248
25	p38 Mitogen-activated Protein Kinase Activates Peroxisome Proliferator-activated Receptor α. Journal of Biological Chemistry, 2001, 276, 44495-44501.	1.6	243
26	A potential link between muscle peroxisome proliferator- activated receptor-α signaling and obesity-related diabetes. Cell Metabolism, 2005, 1, 133-144.	7.2	241
27	The Nuclear Receptor ERRα Is Required for the Bioenergetic and Functional Adaptation to Cardiac Pressure Overload. Cell Metabolism, 2007, 6, 25-37.	7.2	234
28	Energy Metabolic Reprogramming in the Hypertrophied and Early Stage Failing Heart. Circulation: Heart Failure, 2014, 7, 1022-1031.	1.6	233
29	Total Skeletal Muscle PGC-1 Deficiency Uncouples Mitochondrial Derangements from Fiber Type Determination and Insulin Sensitivity. Cell Metabolism, 2010, 12, 633-642.	7.2	230
30	The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight, 2019, 4, .	2.3	218
31	A Role for Peroxisome Proliferator-Activated Receptor Î ³ Coactivator-1 in the Control of Mitochondrial Dynamics During Postnatal Cardiac Growth. Circulation Research, 2014, 114, 626-636.	2.0	182
32	Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism. Journal of Clinical Investigation, 2013, 123, 2564-2575.	3.9	170
33	Hypoxia Inhibits the Peroxisome Proliferator-activated Receptor α/ Retinoid X Receptor Gene Regulatory Pathway in Cardiac Myocytes. Journal of Biological Chemistry, 2001, 276, 27605-27612.	1.6	164
34	Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Research, 2018, 28, 969-980.	5.7	151
35	The transcriptional coactivator PGC-1α is essential for maximal and efficient cardiac mitochondrial fatty acid oxidation and lipid homeostasis. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H185-H196.	1.5	148
36	A Role for Estrogen-related Receptor α in the Control of Mitochondrial Fatty Acid β-Oxidation during Brown Adipocyte Differentiation. Journal of Biological Chemistry, 1997, 272, 31693-31699.	1.6	141

#	Article	IF	CITATIONS
37	Myocardial Fatty Acid Metabolism. Hypertension, 2003, 41, 83-87.	1.3	141
38	Preferential Oxidation of Triacylglyceride-Derived Fatty Acids in Heart Is Augmented by the Nuclear Receptor PPARα. Circulation Research, 2010, 107, 233-241.	2.0	141
39	Mitochondrial protein hyperacetylation in the failing heart. JCI Insight, 2016, 1, .	2.3	133
40	The nuclear receptor PPARÎ ² /δ programs muscle glucose metabolism in cooperation with AMPK and MEF2. Genes and Development, 2011, 25, 2619-2630.	2.7	122
41	Implications of Altered Ketone Metabolism and Therapeutic Ketosis in Heart Failure. Circulation, 2020, 141, 1800-1812.	1.6	116
42	Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency. Cardiovascular Research, 2019, 115, 1606-1616.	1.8	114
43	Irisin, Light My Fire. Science, 2012, 336, 42-43.	6.0	113
44	Therapeutic Potential of Ketone Bodies for Patients With Cardiovascular Disease. Journal of the American College of Cardiology, 2021, 77, 1660-1669.	1.2	111
45	Kruppel-like factor 4 is critical for transcriptional control of cardiac mitochondrial homeostasis. Journal of Clinical Investigation, 2015, 125, 3461-3476.	3.9	104
46	Maintaining Ancient Organelles. Circulation Research, 2015, 116, 1820-1834.	2.0	97
47	Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation. Nature Communications, 2019, 10, 4509.	5.8	93
48	Unlocking the Secrets of Mitochondria in the Cardiovascular System. Circulation, 2019, 140, 1205-1216.	1.6	91
49	Mouse models of mitochondrial dysfunction and heart failure. Journal of Molecular and Cellular Cardiology, 2005, 38, 81-91.	0.9	87
50	Ketone Ester Treatment Improves Cardiac Function and Reduces Pathologic Remodeling in Preclinical Models of Heart Failure. Circulation: Heart Failure, 2021, 14, e007684.	1.6	87
51	Coupling of mitochondrial function and skeletal muscle fiber type by a miRâ€499/Fnip1/ <scp>AMPK</scp> circuit. EMBO Molecular Medicine, 2016, 8, 1212-1228.	3.3	85
52	Sarcolipin Signaling Promotes Mitochondrial Biogenesis and Oxidative Metabolism in Skeletal Muscle. Cell Reports, 2018, 24, 2919-2931.	2.9	85
53	A Critical Role for Estrogen-Related Receptor Signaling in Cardiac Maturation. Circulation Research, 2020, 126, 1685-1702.	2.0	81
54	A Role for Peroxisome Proliferator-activated Receptor Î ³ Coactivator 1 (PGC-1) in the Regulation of Cardiac Mitochondrial Phospholipid Biosynthesis. Journal of Biological Chemistry, 2014, 289, 2250-2259.	1.6	80

#	Article	IF	CITATIONS
55	Exercise Inducible Lactate Dehydrogenase B Regulates Mitochondrial Function in Skeletal Muscle. Journal of Biological Chemistry, 2016, 291, 25306-25318.	1.6	66
56	Cardiac nuclear receptors: architects of mitochondrial structure and function. Journal of Clinical Investigation, 2017, 127, 1155-1164.	3.9	61
57	Fatty Acid Synthase Modulates Homeostatic Responses to Myocardial Stress. Journal of Biological Chemistry, 2011, 286, 30949-30961.	1.6	55
58	Extreme Acetylation of the Cardiac Mitochondrial Proteome Does Not Promote Heart Failure. Circulation Research, 2020, 127, 1094-1108.	2.0	54
59	MondoA coordinately regulates skeletal myocyte lipid homeostasis and insulin signaling. Journal of Clinical Investigation, 2016, 126, 3567-3579.	3.9	52
60	Metabolic Dysfunction Consistent With Premature Aging Results From Deletion of Pim Kinases. Circulation Research, 2014, 115, 376-387.	2.0	49
61	KDM5B Promotes Drug Resistance by Regulating Melanoma-Propagating Cell Subpopulations. Molecular Cancer Therapeutics, 2019, 18, 706-717.	1.9	45
62	Novel mouse model of left ventricular pressure overload and infarction causing predictable ventricular remodelling and progression to heart failure. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 33-40.	0.9	42
63	Skeletal Muscle Energetics and Mitochondrial Function Are Impaired Following 10 Days of Bed Rest in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1744-1753.	1.7	42
64	Respiratory Phenomics across Multiple Models of Protein Hyperacylation in Cardiac Mitochondria Reveals a Marginal Impact on Bioenergetics. Cell Reports, 2019, 26, 1557-1572.e8.	2.9	39
65	Impaired Mitochondrial Energetics Characterize Poor Early Recovery of Muscle Mass Following Hind Limb Unloading in Old Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 1313-1322.	1.7	37
66	Loss of mitochondrial energetics is associated with poor recovery of muscle function but not mass following disuse atrophy. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E899-E910.	1.8	34
67	Mitochondrial function in melanoma. Archives of Biochemistry and Biophysics, 2014, 563, 56-59.	1.4	25
68	Circadian REV-ERBs repress E4bp4 to activate NAMPT-dependent NAD+ biosynthesis and sustain cardiac function. , 2022, 1, 45-58.		25
69	Defects in the Proteome and Metabolome in Human Hypertrophic Cardiomyopathy. Circulation: Heart Failure, 2022, 15, CIRCHEARTFAILURE121009521.	1.6	25
70	Novel Göttingen Miniswine Model of HeartÂFailure With Preserved EjectionÂFraction Integrating MultipleÂComorbidities. JACC Basic To Translational Science, 2021, 6, 154-170.	1.9	24
71	MondoA drives muscle lipid accumulation and insulin resistance. JCI Insight, 2019, 4, .	2.3	22
72	The nuclear receptor ERR cooperates with the cardiogenic factor GATA4 to orchestrate cardiomyocyte maturation. Nature Communications, 2022, 13, 1991.	5.8	20

#	Article	IF	CITATIONS
73	Acute Echocardiographic Effects of Exogenous Ketone Administration in Healthy Participants. Journal of the American Society of Echocardiography, 2022, 35, 305-311.	1.2	19
74	Skeletal muscle PGC-1Î ² signaling is sufficient to drive an endurance exercise phenotype and to counteract components of detraining in mice. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E394-E406.	1.8	18
75	Multimodality assessment of heart failure with preserved ejection fraction skeletal muscle reveals differences in the machinery of energy fuel metabolism. ESC Heart Failure, 2021, 8, 2698-2712.	1.4	16
76	Single-Nucleotide Polymorphism of the <i>MLX</i> Gene Is Associated With Takayasu Arteritis. Circulation Genomic and Precision Medicine, 2018, 11, e002296.	1.6	15
77	Glutaminolysis is Essential for Myofibroblast Persistence and In Vivo Targeting Reverses Fibrosis and Cardiac Dysfunction in Heart Failure. Circulation, 2022, 145, 1625-1628.	1.6	15
78	Fueling Cardiac Hypertrophy. Circulation Research, 2020, 126, 197-199.	2.0	10
79	A Case for Adaptive Cardiac Hypertrophic Remodeling Is CITED. Circulation Research, 2020, 127, 647-650.	2.0	5
80	Nicotinamide Riboside Improves Cardiac Function and Prolongs Survival After Disruption of the Cardiomyocyte Clock. Frontiers in Molecular Medicine, 2022, 2, .	0.6	5
81	Empagliflozin and the Prevention of HeartÂFailure. JACC Basic To Translational Science, 2017, 2, 355-357.	1.9	1