Marilisa Leone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4220947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glucosyl Platinum(II) Complexes Inhibit Aggregation of the C-Terminal Region of the AÎ ² Peptide. Inorganic Chemistry, 2022, 61, 3540-3552.	1.9	18
2	Targeting Ship2-Sam with peptide ligands: Novel insights from a multidisciplinary approach. Bioorganic Chemistry, 2022, 122, 105680.	2.0	3
3	Structure-Activity Relationship Investigations of Novel Constrained Chimeric Peptidomimetics of SOCS3 Protein Targeting JAK2. Pharmaceuticals, 2022, 15, 458.	1.7	0
4	Protein Interaction Domains: Structural Features and Drug Discovery Applications (Part 2). Current Medicinal Chemistry, 2021, 28, 854-892.	1.2	1
5	NMR Spectroscopy in the Conformational Analysis of Peptides: An Overview. Current Medicinal Chemistry, 2021, 28, 2729-2782.	1.2	6
6	Diphenylalanine Motif Drives Selfâ€Assembling in Hybrid PNAâ€Peptide Conjugates. Chemistry - A European Journal, 2021, 27, 14307-14316.	1.7	10
7	The Fight against Human Viruses: How NMR Can Help?. Current Medicinal Chemistry, 2021, 28, 4380-4453.	1.2	3
8	Self-assembly of bio-inspired heterochiral peptides. Bioorganic Chemistry, 2021, 114, 105047.	2.0	11
9	Cyclic mimetics of kinase-inhibitory region of Suppressors of Cytokine Signaling 1: Progress toward novel anti-inflammatory therapeutics. European Journal of Medicinal Chemistry, 2021, 221, 113547.	2.6	10
10	Exploring the Ability of Cyclic Peptides to Target SAM Domains: A Computational and Experimental Study. ChemBioChem, 2020, 21, 702-711.	1.3	9
11	Chimeric Peptidomimetics of SOCS 3 Able to Interact with JAK2 as Anti-inflammatory Compounds. ACS Medicinal Chemistry Letters, 2020, 11, 615-623.	1.3	11
12	Sam Domains in Multiple Diseases. Current Medicinal Chemistry, 2020, 27, 450-476.	1.2	12
13	Protein Interaction Domains and Post-Translational Modifications: Structural Features and Drug Discovery Applications. Current Medicinal Chemistry, 2020, 27, 6306-6355.	1.2	4
14	Monoacylglycerides from the Diatom Skeletonema marinoi Induce Selective Cell Death in Cancer Cells. Marine Drugs, 2019, 17, 625.	2.2	23
15	Design and analysis of EphA2-SAM peptide ligands: A multi-disciplinary screening approach. Bioorganic Chemistry, 2019, 84, 434-443.	2.0	11
16	The antimicrobial peptides casocidins I and II: Solution structural studies in water and different membrane-mimetic environments. Peptides, 2019, 114, 50-58.	1.2	4
17	About TFE: Old and New Findings. Current Protein and Peptide Science, 2019, 20, 425-451.	0.7	27
18	Selfâ€Assembling of Fmocâ€GC Peptide Nucleic Acid Dimers into Highly Fluorescent Aggregates. Chemistry - A European Journal, 2018, 24, 4729-4735.	1.7	21

MARILISA LEONE

#	Article	IF	CITATIONS
19	Structureâ€activity studies of peptidomimetics based on kinaseâ€inhibitory region of suppressors of cytokine signaling 1. Peptide Science, 2018, 110, e23082.	1.0	8
20	Sam domain-based stapled peptides: Structural analysis and interaction studies with the Sam domains from the EphA2 receptor and the lipid phosphatase Ship2. Bioorganic Chemistry, 2018, 80, 602-610.	2.0	17
21	Characterization of linear mimetic peptides of Interleukin-22 from dissection of protein interfaces. Biochimie, 2017, 138, 106-115.	1.3	17
22	Structural investigation of a C-terminal EphA2 receptor mutant: Does mutation affect the structure and interaction properties of the Sam domain?. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1095-1104.	1.1	3
23	The Sam-Sam interaction between Ship2 and the EphA2 receptor: design and analysis of peptide inhibitors. Scientific Reports, 2017, 7, 17474.	1.6	17
24	Ac‣PFFDâ€Th: A Trehaloseâ€Conjugated Peptidomimetic as a Strong Suppressor of Amyloidâ€Î² Oligomer Formation and Cytotoxicity. ChemBioChem, 2016, 17, 1541-1549.	1.3	28
25	Highâ€Throughput Screening (HTS) by NMR Guided Identification of Novel Agents Targeting the Protein Docking Domain of YopH. ChemMedChem, 2016, 11, 919-927.	1.6	18
26	Self-assembly of PEGylated tetra-phenylalanine derivatives: structural insights from solution and solid state studies. Scientific Reports, 2016, 6, 26638.	1.6	32
27	Targeting EphA2â€Sam and Its Interactome: Design and Evaluation of Helical Peptides Enriched in Charged Residues. ChemBioChem, 2016, 17, 2179-2188.	1.3	14
28	Eco-friendly microwave-assisted protocol to prepare hyaluronan-fatty acid conjugates and to induce their self-assembly process. Carbohydrate Polymers, 2016, 143, 84-89.	5.1	14
29	Destabilisation, aggregation, toxicity and cytosolic mislocalisation of nucleophosmin regions associated with acute myeloid leukemia. Oncotarget, 2016, 7, 59129-59143.	0.8	41
30	The Sam Domain of EphA2 Receptor and its Relevance to Cancer: A Novel Challenge for Drug Discovery?. Current Medicinal Chemistry, 2016, 23, 4718-4734.	1.2	19
31	Peptide Fragments of Odinâ€5am1: Conformational Analysis and Interaction Studies with EphA2â€5am. ChemBioChem, 2015, 16, 1629-1636.	1.3	13
32	Design and activity of a cyclic mini-β-defensin analog: a novel antimicrobial tool. International Journal of Nanomedicine, 2015, 10, 6523.	3.3	30
33	Conformational Ensembles Explored Dynamically from Disordered Peptides Targeting Chemokine Receptor CXCR4. International Journal of Molecular Sciences, 2015, 16, 12159-12173.	1.8	7
34	Nucleophosmin contains amyloidogenic regions that are able to form toxic aggregates under physiological conditions. FASEB Journal, 2015, 29, 3689-3701.	0.2	53
35	Intrinsically disordered amphiphilic peptides as potential targets in drug delivery vehicles. Molecular BioSystems, 2015, 11, 2925-2932.	2.9	6
36	A biocompatible process to prepare hyaluronan-based material able to self-assemble into stable nano-particles. RSC Advances, 2015, 5, 29573-29576.	1.7	10

MARILISA LEONE

#	Article	IF	CITATIONS
37	Solid-Phase S-Alkylation Promoted by Molecular Sieves. Organic Letters, 2015, 17, 5646-5649.	2.4	20
38	Conformational disorder in phosphopeptides: solution studies by CD and NMR techniques. Peptidomics, 2014, 1, .	0.3	2
39	Peptides targeting chemokine receptor CXCR4: structural behavior and biological binding studies. Journal of Peptide Science, 2014, 20, 270-278.	0.8	8
40	Lipidated peptides via post-synthetic thioalkylation promoted by molecular sieves. Amino Acids, 2014, 46, 1899-1905.	1.2	16
41	Structural Insights into and Activity Analysis of the Antimicrobial Peptide Myxinidin. Antimicrobial Agents and Chemotherapy, 2014, 58, 5280-5290.	1.4	54
42	G-quadruplex DNA recognition by nucleophosmin: New insights from protein dissection. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2050-2059.	1.1	51
43	CD and NMR conformational studies of a peptide encompassing the Mid Loop interface of <scp>Ship2</scp> – <scp>Sam</scp> . Biopolymers, 2014, 101, 1088-1098.	1.2	12
44	Chemical Modifications of Peptide Sequences via S-Alkylation Reaction. Organic Letters, 2013, 15, 5354-5357.	2.4	23
45	Solution conformational features and interfacial properties of an intrinsically disordered peptide coupled to alkyl chains: a new class of peptide amphiphiles. Molecular BioSystems, 2013, 9, 1401.	2.9	8
46	Heterotypic Sam–Sam Association between Odin‣am1 and Arap3‣am: Binding Affinity and Structural Insights. ChemBioChem, 2013, 14, 100-106.	1.3	19
47	Structure-Activity Relations of Myxinidin, an Antibacterial Peptide Derived from the Epidermal Mucus of Hagfish. Antimicrobial Agents and Chemotherapy, 2013, 57, 5665-5673.	1.4	37
48	Gold Nanoparticles Capped by a GC-Containing Peptide Functionalized with an RGD Motif for Integrin Targeting. Bioconjugate Chemistry, 2012, 23, 340-349.	1.8	41
49	Solution Structure of the First Sam Domain of Odin and Binding Studies with the EphA2 Receptor. Biochemistry, 2012, 51, 2136-2145.	1.2	34
50	Nucleolar accumulation of APE1 depends on charged lysine residues that undergo acetylation upon genotoxic stress and modulate its BER activity in cells. Molecular Biology of the Cell, 2012, 23, 4079-4096.	0.9	99
51	Postsynthetic Modification of Peptides via Chemoselective N-Alkylation of Their Side Chains. Organic Letters, 2012, 14, 1664-1667.	2.4	19
52	Chemical modification of pectin: environmental friendly process for new potential material development. Polymer Chemistry, 2011, 2, 800.	1.9	43
53	Design and NMR Studies of Cyclic Peptides Targeting the Nâ€Terminal Domain of the Protein Tyrosine Phosphatase YopH. Chemical Biology and Drug Design, 2011, 77, 12-19.	1.5	5
54	Zinc to cadmium replacement in the <i>A. thaliana</i> SUPERMAN Cys ₂ His ₂ zinc finger induces structural rearrangements of typical DNA base determinant positions. Biopolymers, 2011, 95, 801-810.	1.2	38

MARILISA LEONE

#	Article	IF	CITATIONS
55	NMRâ€Based Design and Evaluation of Novel Bidentate Inhibitors of the Protein Tyrosine Phosphatase YopH. Chemical Biology and Drug Design, 2010, 76, 10-16.	1.5	19
56	The Sam domain of the lipid phosphatase Ship2 adopts a common model to interact with Arap3-Sam and EphA2-Sam. BMC Structural Biology, 2009, 9, 59.	2.3	31
57	The PTB domain of tensin: NMR solution structure and phosphoinositides binding studies. Biopolymers, 2008, 89, 86-92.	1.2	15
58	NMR Studies of a Heterotypic Samâ^'Sam Domain Association: The Interaction between the Lipid Phosphatase Ship2 and the EphA2 Receptor [,] . Biochemistry, 2008, 47, 12721-12728.	1.2	55
59	Luminescent Silica Nanobeads:Â Characterization and Evaluation as Efficient Cytoplasmatic Transporters for T-Lymphocytes. Journal of the American Chemical Society, 2007, 129, 7814-7823.	6.6	26
60	Structure-based discovery of a new class of Bcl-xL antagonists. Bioorganic Chemistry, 2007, 35, 344-353.	2.0	21
61	The FRB Domain of mTOR: NMR Solution Structure and Inhibitor Designâ€,‡. Biochemistry, 2006, 45, 10294-10302.	1.2	47
62	NMR assignment of the phosphotyrosine binding (PTB) domain of tensin. Journal of Biomolecular NMR, 2006, 36, 40-40.	1.6	1
63	Structure-activity relationships by interligand NOE-based design and synthesis of antiapoptotic compounds targeting Bid. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12602-12606.	3.3	87
64	The Nuclear Overhauser Effect in the Lead Identification Process Pharmacophore Models. Current Drug Discovery Technologies, 2006, 3, 91-100.	0.6	19
65	A Structure-based Approach to Retinoid X Receptor-α Inhibition. Journal of Biological Chemistry, 2006, 281, 16643-16648.	1.6	10
66	Structural Analysis of Siah1-Siah-interacting Protein Interactions and Insights into the Assembly of an E3 Ligase Multiprotein Complex. Journal of Biological Chemistry, 2005, 280, 34278-34287.	1.6	86
67	Rational Design and Real Time, In-Cell Detection of the Proapoptotic Activity of a Novel Compound Targeting Bcl-XL. Chemistry and Biology, 2004, 11, 389-395.	6.2	150
68	Targeting Apoptosis via Chemical Design. Chemistry and Biology, 2004, 11, 1107-1117.	6.2	88
69	Solution Structure and Backbone Dynamics of the K18G/R82EAlicyclobacillus acidocaldariusThioredoxin Mutant:A A Molecular Analysis of Its Reduced Thermal Stabilityâ€,‡. Biochemistry, 2004, 43, 6043-6058.	1.2	22
70	Selective Incorporation of 19F-Labeled Trp Side Chains for NMR-Spectroscopy-Based Ligand-Protein Interaction Studies. ChemBioChem, 2003, 4, 649-650.	1.3	37
71	Discovery, Characterization, and Structureâ ^{~,} Activity Relationships Studies of Proapoptotic Polyphenols Targeting B-Cell Lymphocyte/Leukemia-2 Proteins. Journal of Medicinal Chemistry, 2003, 46, 4259-4264.	2.9	366
72	Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Research, 2003, 63, 8118-21.	0.4	195

#	Article	IF	CITATIONS
73	Structural Investigation of the HIV-1 Envelope Glycoprotein gp160 Cleavage Site. Chemistry - A European Journal, 2002, 8, 1467-1473.	1.7	10