Alon A Gorodetsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4220876/publications.pdf

Version: 2024-02-01

230014 206121 2,749 67 27 51 citations h-index g-index papers 69 69 69 4103 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Scalable manufacturing of sustainable packaging materials with tunable thermoregulability. Nature Sustainability, 2022, 5, 434-443.	11.5	13
2	An aza-Diels–Alder route to quinoline-based unnatural amino acids and polypeptide surrogates. RSC Advances, 2021, 11, 14132-14139.	1.7	1
3	An aza-Diels–Alder approach to chlorinated quinolines, benzoquinolines, and polybenzoquinolines. RSC Advances, 2021, 11, 13722-13730.	1.7	O
4	Long-Range Proton Transport in Films from a Reflectin-Derived Polypeptide. ACS Applied Materials & Long-Range Proton Transport in Films from a Reflectin-Derived Polypeptide. ACS Applied Materials & Long-Range Proton Transport in Films from a Reflectin-Derived Polypeptide. ACS Applied Materials & Long-Range Proton Transport in Films from a Reflectin-Derived Polypeptide. ACS Applied Materials & Long-Range Proton Transport in Films from a Reflectin-Derived Polypeptide. ACS Applied Materials & Long-Range Proton Transport in Films from a Reflectin-Derived Polypeptide. ACS Applied Materials & Long-Range Proton Transport in Films from a Reflectin-Derived Polypeptide. ACS Applied Materials & Long-Range Proton Transport in Films from a Reflectin-Derived Polypeptide. ACS Applied Materials & Long-Range Proton Transport in Films from a Reflectin-Derived Polypeptide. ACS Applied Materials & Long-Range Proton Transport in Films from a Reflectin-Derived Polypeptide.	4.0	3
5	Reconfigurable Micro- and Nano-Structured Camouflage Surfaces Inspired by Cephalopods. ACS Nano, 2021, 15, 17299-17309.	7. 3	21
6	Tunable Assembly and Refractive Index of a Cephalopod Protein-Based Material., 2021,,.		0
7	OSA Novel Optical Materials and Applications Topical Meeting (NOMA) Cephalopod-Inspired Manipulation of the Refractive Index of Human Cells. , 2021 , , .		O
8	Proton conduction in inkjet-printed reflectin films. APL Materials, 2020, 8, 101113.	2.2	5
9	Bottom-up synthesis of nitrogen-containing graphene nanoribbons from the tetrabenzopentacene molecular motif. Carbon, 2020, 170, 677-684.	5.4	12
10	Structure, self-assembly, and properties of a truncated reflectin variant. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32891-32901.	3.3	11
11	Cephalopod-inspired optical engineering of human cells. Nature Communications, 2020, 11, 2708.	5.8	29
12	Stretchable Cephalopodâ€Inspired Multimodal Camouflage Systems. Advanced Materials, 2020, 32, e1905717.	11.1	62
13	Accurate First-Principles Calculation of the Vibronic Spectrum of Stacked Perylene Tetracarboxylic Acid Diimides. Journal of Physical Chemistry A, 2020, 124, 3055-3063.	1.1	16
14	Growth and Spatial Control of Murine Neural Stem Cells on Reflectin Films. ACS Biomaterials Science and Engineering, 2020, 6, 1311-1320.	2.6	4
15	Molecular dynamics simulations of DNA-inspired macromolecules from perylenediimide base surrogates. Synthetic Metals, 2019, 253, 146-152.	2.1	6
16	A dynamic thermoregulatory material inspired by squid skin. Nature Communications, 2019, 10, 1947.	5.8	109
17	Enhancement of the Electrical Properties of DNA Molecular Wires through Incorporation of Perylenediimide DNA Base Surrogates. ChemPlusChem, 2019, 84, 416-419.	1.3	3
18	Dynamic Materials Inspired by Cephalopods. , 2019, , .		0

#	Article	IF	CITATIONS
19	Cephalopodâ€Derived Biopolymers for Ionic and Protonic Transistors. Advanced Materials, 2018, 30, e1704917.	11.1	27
20	Aza-Dielsâ€"Alder Approach to Diquinolineanthracene and Polydiquinolineanthracene Derivatives. Organic Letters, 2018, 20, 502-505.	2.4	20
21	Adaptive infrared-reflecting systems inspired by cephalopods. Science, 2018, 359, 1495-1500.	6.0	309
22	Roadmap on semiconductor–cell biointerfaces. Physical Biology, 2018, 15, 031002.	0.8	45
23	An introduction to color-changing systems from the cephalopod protein reflectin. Bioinspiration and Biomimetics, 2018, 13, 045001.	1.5	20
24	Unexpected length dependence of excited-state charge transfer dynamics for surface-confined perylenediimide ensembles. Materials Horizons, 2017, 4, 437-441.	6.4	5
25	Protochromic Devices from a Cephalopod Structural Protein. Advanced Optical Materials, 2017, 5, 1600751.	3.6	22
26	Camouflage: Protochromic Devices from a Cephalopod Structural Protein (Advanced Optical) Tj ETQq0 0 0 rgBT	Oyerlock	10 ₀ Tf 50 462
27	Preface for Special Topic: From molluscs to materials. APL Materials, 2017, 5, 104401.	2.2	0
28	Synthesis of Nitrogenâ€Containing Rubicene and Tetrabenzopentacene Derivatives. Angewandte Chemie, 2016, 128, 3413-3416.	1.6	21
29	Lengthâ€Independent Charge Transport in Chimeric Molecular Wires. Angewandte Chemie, 2016, 128, 14479-14483.	1.6	1
30	Photochemical Doping of Protonic Transistors from a Cephalopod Protein. Chemistry of Materials, 2016, 28, 3703-3710.	3.2	35
31	Synthesis of polyquinolines <i>via</i> an AA/BB-type aza-Diels–Alder polymerization reaction. Journal of Materials Chemistry C, 2016, 4, 4060-4066.	2.7	12
32	Bioinspired Films: Selfâ€Assembly of the Cephalopod Protein Reflectin (Adv. Mater. 38/2016). Advanced Materials, 2016, 28, 8553-8553.	11.1	0
33	Lengthâ€Independent Charge Transport in Chimeric Molecular Wires. Angewandte Chemie - International Edition, 2016, 55, 14267-14271.	7.2	13
34	Dynamic Materials Inspired by Cephalopods. Chemistry of Materials, 2016, 28, 6804-6816.	3.2	78
35	Selfâ€Assembly of the Cephalopod Protein Reflectin. Advanced Materials, 2016, 28, 8405-8412.	11.1	41
36	Synthesis of Nitrogenâ€Containing Rubicene and Tetrabenzopentacene Derivatives. Angewandte Chemie - International Edition, 2016, 55, 3352-3355.	7.2	47

#	Article	IF	CITATIONS
37	Production and electrical characterization of the reflectin A2 isoform from Doryteuthis (Loligo) pealeii. RSC Advances, 2016, 6, 57103-57107.	1.7	17
38	Reflectin as a Material for Neural Stem Cell Growth. ACS Applied Materials & Samp; Interfaces, 2016, 8, 278-284.	4.0	24
39	An Aza-Diels–Alder Approach to Crowded Benzoquinolines. Organic Letters, 2016, 18, 156-159.	2.4	15
40	An Aza-Diels–Alder Route to Polyquinolines. Macromolecules, 2015, 48, 557-561.	2.2	31
41	Infrared invisibility stickers inspired by cephalopods. Journal of Materials Chemistry C, 2015, 3, 6493-6498.	2.7	57
42	Clamping down on cancer detection. Nature Chemistry, 2015, 7, 541-542.	6.6	14
43	Synthesis of Polybenzoquinolines as Precursors for Nitrogenâ€Doped Graphene Nanoribbons. Angewandte Chemie - International Edition, 2015, 54, 5883-5887.	7.2	25
44	Molecular Dynamics Simulations of Perylenediimide DNA Base Surrogates. Journal of Physical Chemistry B, 2015, 119, 11459-11465.	1.2	10
45	Protonic transistors from thin reflectin films. APL Materials, 2015, 3, .	2.2	36
46	Electrochemistry of DNA Monolayers Modified With a Perylenediimide Base Surrogate. Journal of Physical Chemistry C, 2014, 118, 29084-29090.	1.5	17
47	Bulk protonic conductivity in a cephalopod structural protein. Nature Chemistry, 2014, 6, 596-602.	6.6	205
48	Reconfigurable Infrared Camouflage Coatings from a Cephalopod Protein. Advanced Materials, 2013, 25, 5621-5625.	11.1	162
49	Donor–Acceptor Shape Matching Drives Performance in Photovoltaics. Advanced Energy Materials, 2013, 3, 894-902.	10.2	43
50	Camouflage Coatings: Reconfigurable Infrared Camouflage Coatings from a Cephalopod Protein (Adv.) Tj ETQq0	O OrgBT /	Overlock 10 T
51	Reticulated Organic Photovoltaics. Advanced Functional Materials, 2012, 22, 1167-1173.	7.8	13
52	Bending contorted hexabenzocoronene into a bowl. Chemical Science, 2011, 2, 132-135.	3.7	69
53	Single-layer graphene cathodes for organic photovoltaics. Applied Physics Letters, 2011, 98, .	1.5	60
54	Shape-shifting in contorted dibenzotetrathienocoronenes. Chemical Science, 2011, 2, 1480-1486.	3.7	100

#	Article	IF	CITATIONS
55	Inside Cover: Photovoltaic Universal Joints: Ball-and-Socket Interfaces in Molecular Photovoltaic Cells (ChemPhysChem 4/2010). ChemPhysChem, 2010, 11, 742-742.	1.0	0
56	Reticulated Heterojunctions for Photovoltaic Devices. Angewandte Chemie - International Edition, 2010, 49, 7909-7912.	7.2	80
57	Functionalized Hyperbranched Polymers via Olefin Metathesis. Macromolecules, 2009, 42, 2895-2898.	2.2	50
58	Solar Cells from a Solution Processable Pentacene with Improved Air Stability. Chemistry of Materials, 2009, 21, 4090-4092.	3.2	43
59	Electrical Detection of TATA Binding Protein at DNA-Modified Microelectrodes. Journal of the American Chemical Society, 2008, 130, 2924-2925.	6.6	85
60	DNA-Mediated Electrochemistry. Bioconjugate Chemistry, 2008, 19, 2285-2296.	1.8	146
61	Scanning Electrochemical Microscopy of DNA Monolayers Modified with Nile Blue. Langmuir, 2008, 24, 14282-14288.	1.6	40
62	DNA binding shifts the redox potential of the transcription factor SoxR. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3684-3689.	3.3	68
63	DNA-Mediated Electrochemistry of Disulfides on Graphite. Journal of the American Chemical Society, 2007, 129, 6074-6075.	6.6	27
64	Coupling into the Base Pair Stack Is Necessary for DNA-Mediated Electrochemistry. Bioconjugate Chemistry, 2007, 18, 1434-1441.	1.8	62
65	Electrochemistry Using Self-Assembled DNA Monolayers on Highly Oriented Pyrolytic Graphite. Langmuir, 2006, 22, 7917-7922.	1.6	75
66	Direct Electrochemistry of Endonuclease III in the Presence and Absence of DNA. Journal of the American Chemical Society, 2006, 128, 12082-12083.	6.6	72
67	Photophysical properties of tris(bipyridyl)ruthenium(ii) thin films and devices. Physical Chemistry Chemical Physics, 2003, 5, 2706-2709.	1.3	75