Marcus MÃ¹/₄ller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/422064/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phoenix auditory neurons as 3R cell model for high throughput screening of neurogenic compounds. Hearing Research, 2022, 414, 108391.	2.0	5
2	Diagnostic Yield of Targeted Hearing Loss Gene Panel Sequencing in a Large German Cohort With a Balanced Age Distribution from a Single Diagnostic Center: An Eight-year Study. Ear and Hearing, 2022, 43, 1049-1066.	2.1	13
3	The ototoxic effect of locally applied kanamycin and furosemide in guinea pigs. Journal of Neuroscience Methods, 2022, 372, 109527.	2.5	6
4	Aberrant <i>COL11A1</i> splicing causes prelingual autosomal dominant nonsyndromic hearing loss in the DFNA37 locus. Human Mutation, 2021, 42, 25-30.	2.5	6
5	Auditory Threshold Variability in the SAMP8 Mouse Model of Age-Related Hearing Loss: Functional Loss and Phenotypic Change Precede Outer Hair Cell Loss. Frontiers in Aging Neuroscience, 2021, 13, 708190.	3.4	7
6	ExplantAnalyzer: An advanced automated neurite outgrowth analysis evaluated by means of organotypic auditory neuron explant cultures. Journal of Neuroscience Methods, 2021, 363, 109341.	2.5	2
7	Age-Dependency of Neurite Outgrowth in Postnatal Mouse Cochlear Spiral Ganglion Explants. Brain Sciences, 2020, 10, 580.	2.3	8
8	Intrinsically Self-renewing Neuroprogenitors From the A/J Mouse Spiral Ganglion as Virtually Unlimited Source of Mature Auditory Neurons. Frontiers in Cellular Neuroscience, 2020, 14, 395.	3.7	8
9	Poly (ADP-Ribose) Polymerase-1 (PARP1) Deficiency and Pharmacological Inhibition by Pirenzepine Protects From Cisplatin-Induced Ototoxicity Without Affecting Antitumor Efficacy. Frontiers in Cellular Neuroscience, 2019, 13, 406.	3.7	5
10	Lower ototoxicity and absence of hidden hearing loss point to gentamicin C1a and apramycin as promising antibiotics for clinical use. Scientific Reports, 2019, 9, 2410.	3.3	43
11	Myelin-induced inhibition in a spiral ganglion organ culture – Approaching a natural environment in vitro. Neuroscience, 2017, 357, 75-83.	2.3	7
12	NANOCl—Nanotechnology Based Cochlear Implant With Gapless Interface to Auditory Neurons. Otology and Neurotology, 2017, 38, e224-e231.	1.3	38
13	Biofunctionalized peptide-based hydrogels provide permissive scaffolds to attract neurite outgrowth from spiral ganglion neurons. Colloids and Surfaces B: Biointerfaces, 2017, 149, 105-114.	5.0	35
14	Bmi1 Loss in the Organ of Corti Results in p16ink4a Upregulation and Reduced Cell Proliferation of Otic Progenitors In Vitro. PLoS ONE, 2016, 11, e0164579.	2.5	4
15	Fine control of drug delivery for cochlear implant applications. Hearing, Balance and Communication, 2015, 13, 153-159.	0.4	11
16	Methyl methacrylate embedding to study the morphology and immunohistochemistry of adult guinea pig and mouse cochleae. Journal of Neuroscience Methods, 2015, 254, 86-93.	2.5	16
17	Assessing cisplatin-induced ototoxicity and otoprotection in whole organ culture of the mouse inner ear in simulated microgravity. Toxicology Letters, 2014, 227, 203-212.	0.8	14
18	Co-localisation of Kir4.1 and AQP4 in rat and human cochleae reveals a gap in water channel expression at the transduction sites of endocochlear K+ recycling routes. Cell and Tissue Research, 2012, 350, 27-43.	2.9	33

Marcus MÃ¹/4ller

#	Article	IF	CITATIONS
19	Water channel proteins in the inner ear and their link to hearing impairment and deafness. Molecular Aspects of Medicine, 2012, 33, 612-637.	6.4	55
20	A Novel Buoyancy Technique Optimizes Simulated Microgravity Conditions for Whole Sensory Organ Culture in Rotating Bioreactors. Tissue Engineering - Part C: Methods, 2010, 16, 51-61.	2.1	8
21	Molecular aspects of tinnitus. Hearing Research, 2010, 266, 60-69.	2.0	39
22	A physiological frequency-position map of the chinchilla cochlea. Hearing Research, 2010, 268, 184-193.	2.0	37
23	Whole organ culture of the postnatal sensory inner ear in simulated microgravity. Journal of Neuroscience Methods, 2008, 171, 60-71.	2.5	14
24	Lack of Tff3 Peptide Results in Hearing Impairment and Accelerated Presbyacusis. Cellular Physiology and Biochemistry, 2008, 21, 437-444.	1.6	15
25	Estrogen and the inner ear: megalin knockout mice suffer progressive hearing loss. FASEB Journal, 2008, 22, 410-417.	0.5	58
26	BDNF mRNA expression and protein localization are changed in age-related hearing loss. Neurobiology of Aging, 2007, 28, 586-601.	3.1	43
27	A physiological place–frequency map of the cochlea in the CBA/J mouse. Hearing Research, 2005, 202, 63-73.	2.0	367
28	Increased noise sensitivity and altered inner ear MENA distribution in VASP?/? mice. Cell and Tissue Research, 2004, 318, 493-502.	2.9	21
29	Deletion of the Ca2+-activated potassium (BK) Â-subunit but not the BKÂ1-subunit leads to progressive hearing loss. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12922-12927.	7.1	173
30	Lack of Bdnf and TrkB signalling in the postnatal cochlea leads to a spatial reshaping of innervation along the tonotopic axis and hearing loss. Development (Cambridge), 2003, 130, 4741-4750.	2.5	120
31	Functional Recovery of Hearing following AMPA-Induced Reversible Disruption of Hair Cell Afferent Synapses in the Avian Inner Ear. Audiology and Neuro-Otology, 2001, 6, 66-78.	1.3	12
32	A Novel Microperfusion System for the Long-Term Local Supply of Drugs to the Inner Ear: Implantation and Function in the Rat Model. Audiology and Neuro-Otology, 2001, 6, 250-258.	1.3	25
33	Responses of auditory nerve fibers innervating regenerated hair cells after local application of gentamicin at the round window of the cochlea in the pigeon. Hearing Research, 1999, 131, 153-169.	2.0	13
34	AMPA-type glutamate receptor subunits are expressed in the avian cochlear hair cells and ganglion cells. NeuroReport, 1999, 10, 2137-2141.	1.2	13
35	Hair cell regeneration after local application of gentamicin at the round window of the cochlea in the pigeon. Hearing Research, 1998, 120, 25-36.	2.0	21
36	Hair cell loss and regeneration after severe acoustic overstimulation in the adult pigeon. Hearing Research, 1998, 120, 109-120.	2.0	11

Marcus Müller

#	Article	IF	CITATIONS
37	Loss of auditory function in transgenic Mpv17-deficient mice. Hearing Research, 1997, 114, 259-263.	2.0	26
38	The cochlear place-frequency map of the adult and developing mongolian gerbil. Hearing Research, 1996, 94, 148-156.	2.0	226
39	Regeneration after tall hair cell damage following severe acoustic trauma in adult pigeons: correlation between cochlear morphology, compound action potential responses and single fiber properties in single animals. Hearing Research, 1996, 102, 133-154.	2.0	19
40	Cochlear place-frequency map in the marsupial Monodelphis domestica. Hearing Research, 1993, 67, 198-202.	2.0	34
41	Frequency representation and spiral ganglion cell density in the cochlea of the gerbil Pachyuromys duprasi. Hearing Research, 1991, 56, 191-196.	2.0	25
42	Shapes of rate-versus-level functions of primary auditory nerve fibres: Test of the basilar membrane mechanical hypothesis. Hearing Research, 1991, 57, 71-78.	2.0	23
43	Developmental changes of frequency representation in the rat cochlea. Hearing Research, 1991, 56, 1-7.	2.0	61
44	Rate-versus-level functions of primary auditory nerve fibres: Evidence for square law behaviour of all fibre categories in the guinea pig. Hearing Research, 1991, 55, 50-56.	2.0	30