
Foivos Markoulidis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4220607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduction of porous carbon/Al contact resistance for an electric double-layer capacitor (EDLC). Electrochimica Acta, 2013, 92, 183-187.	5.2	190
2	Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks. ACS Applied Materials & amp; Interfaces, 2017, 9, 37136-37145.	8.0	148
3	Activated carbon from phenolic resin with controlled mesoporosity for an electric double-layer capacitor (EDLC). Journal of Materials Chemistry A, 2013, 1, 6037.	10.3	129
4	2021 roadmap on lithium sulfur batteries. JPhys Energy, 2021, 3, 031501.	5.3	74
5	Carbon foams from emulsion-templated reduced graphene oxide polymer composites: electrodes for supercapacitor devices. Journal of Materials Chemistry A, 2018, 6, 1840-1849.	10.3	70
6	A method to increase the energy density of supercapacitor cells by the addition of multiwall carbon nanotubes into activated carbon electrodes. Carbon, 2014, 68, 58-66.	10.3	55
7	Carbon-Based Fibrous EDLC Capacitors and Supercapacitors. Journal of Nanotechnology, 2011, 2011, 1-8.	3.4	51
8	Cross-linked single-walled carbon nanotube aerogel electrodes via reductive coupling chemistry. Journal of Materials Chemistry A, 2016, 4, 5385-5389.	10.3	33
9	Supercapacitors with lithium-ion electrolyte: An experimental study and design of the activated carbon electrodes via modelling and simulations. Carbon, 2020, 164, 422-434.	10.3	30
10	Investigations of Activated Carbon Fabric-based Supercapacitors with Different Interlayers via Experiments and Modelling of Electrochemical Processes of Different Timescales. Electrochimica Acta, 2017, 249, 122-134.	5.2	24
11	The Composite Supercapacitor. Energy Technology, 2016, 4, 517-525.	3.8	22
12	Phenolic carbon cloth-based electric double-layer capacitors with conductive interlayers and graphene coating. Journal of Applied Electrochemistry, 2016, 46, 251-258.	2.9	19
13	Fabrication of high-performance supercapacitors based on transversely oriented carbon nanotubes. Applied Physics A: Materials Science and Processing, 2013, 111, 227-236.	2.3	16
14	Composite Electrodes of Activated Carbon and Multiwall Carbon Nanotubes Decorated with Silver Nanoparticles for High Power Energy Storage. Journal of Composites Science, 2019, 3, 97.	3.0	16
15	Electrochemical double-layer capacitors with lithium-ion electrolyte and electrode coatings with PEDOT:PSS binder. Journal of Applied Electrochemistry, 2021, 51, 373-385.	2.9	13
16	High-performance Supercapacitor cells with Activated Carbon/MWNT nanocomposite electrodes. IOP Conference Series: Materials Science and Engineering, 2012, 40, 012021.	0.6	12
17	Design of Porous Carbons for Supercapacitor Applications for Different Organic Solvent-Electrolytes. Journal of Carbon Research, 2021, 7, 15.	2.7	11
18	Ecological assessment of nano-enabled supercapacitors for automotive applications. IOP Conference Series: Materials Science and Engineering, 2012, 40, 012013.	0.6	9

#	Article	IF	CITATIONS
19	Cost analysis of supercapacitor cell production. , 2013, , .		9
20	Polymer Blends and Polymer Nanocomposites for Photovoltaic (PV) Cells and an Investigation of the Material Deposition Techniques in PV Cell Fabrication. Journal of Composites Science, 2021, 5, 263.	3.0	4
21	Nanomaterials and nanocomposites for high energy/high power supercapacitors. , 2012, , .		1
22	Increasing Energy Density and Power Density in Hybridised Supercapacitor-Battery Devices. ECS Meeting Abstracts, 2019, , .	0.0	0