Eric M Prager

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4220179/publications.pdf

Version: 2024-02-01

331670 361022 1,459 37 21 35 h-index citations g-index papers 38 38 38 2001 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phenotyping the Spectrum of Traumatic Brain Injury: A Review and Pathway to Standardization. Journal of Neurotrauma, 2021, 38, 3222-3234.	3.4	22
2	Epidemiology of Chronic Effects of Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 3235-3247.	3.4	74
3	Roadmap for Advancing Pre-Clinical Science in Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 3204-3221.	3.4	20
4	A Review of Implementation Concepts and Strategies Surrounding Traumatic Brain Injury Clinical Care Guidelines. Journal of Neurotrauma, 2021, 38, 3195-3203.	3.4	8
5	Interest of neuroimaging of social exclusion in suicide. Journal of Neuroscience Research, 2020, 98, 581-587.	2.9	8
6	Dopamine Oppositely Modulates State Transitions in Striosome and Matrix Direct Pathway Striatal Spiny Neurons. Neuron, 2020, 108, 1091-1102.e5.	8.1	28
7	Leveling the Playing Field: A New Initiative to Publish Negative and Replication Data in Brain Trauma. Neurotrauma Reports, 2020, $1,146-147.$	1.4	O
8	Compartmental function and modulation of the striatum. Journal of Neuroscience Research, 2019, 97, 1503-1514.	2.9	35
9	Improving transparency and scientific rigor in academic publishing. Brain and Behavior, 2019, 9, e01141.	2.2	23
10	Improving transparency and scientific rigor in academic publishing. Journal of Neuroscience Research, 2019, 97, 377-390.	2.9	39
11	The quest for transparent science: Open peer review. Journal of Neuroscience Research, 2019, 97, 227-227.	2.9	3
12	Improving transparency and scientific rigor in academic publishing. Cancer Reports, 2019, 2, e1150.	1.4	5
13	The experience of social exclusion in women with a history of suicidal acts: a neuroimaging study. Scientific Reports, 2017, 7, 89.	3.3	93
14	Susceptibility to Soman Toxicity and Efficacy of LY293558 Against Soman-Induced Seizures and Neuropathology in 10-Month-Old Male Rats. Neurotoxicity Research, 2017, 32, 694-706.	2.7	11
15	Addressing sex as a biological variable. Journal of Neuroscience Research, 2017, 95, 11-11.	2.9	30
16	Repeated Isoflurane Exposures Impair Long-Term Potentiation and Increase Basal GABAergic Activity in the Basolateral Amygdala. Neural Plasticity, 2016, 2016, 1-9.	2.2	17
17	The tenth annual amygdala, stress, and PTSD conference: "The amygdala: Dysfunction, hyperfunction, and connectivityâ€. Journal of Neuroscience Research, 2016, 94, 433-436.	2.9	3
18	A commitment and vision to the future of the Journal of Neuroscience Research. Journal of Neuroscience Research, 2016, 94, 1373-1373.	2.9	1

#	Article	IF	Citations
19	Transparent reporting for reproducible science. Journal of Neuroscience Research, 2016, 94, 859-864.	2.9	21
20	The basolateral amygdala γâ€aminobutyric acidergic system in health and disease. Journal of Neuroscience Research, 2016, 94, 548-567.	2.9	139
21	Longâ€term neuropathological and behavioral impairments after exposure to nerve agents. Annals of the New York Academy of Sciences, 2016, 1374, 17-28.	3.8	39
22	A rat model of nerve agent exposure applicable to the pediatric population: The anticonvulsant efficacies of atropine and GluK1 antagonists. Toxicology and Applied Pharmacology, 2015, 284, 204-216.	2.8	22
23	A meta-analysis of cytokines in suicidal behavior. Brain, Behavior, and Immunity, 2015, 46, 203-211.	4.1	94
24	GABAergic interneuronal loss and reduced inhibitory synaptic transmission in the hippocampal CA1 region after mild traumatic brain injury. Experimental Neurology, 2015, 273, 11-23.	4.1	67
25	LY293558 prevents soman-induced pathophysiological alterations in the basolateral amygdala and the development of anxiety. Neuropharmacology, 2015, 89, 11-18.	4.1	23
26	Pathophysiological mechanisms underlying increased anxiety after soman exposure: Reduced GABAergic inhibition in the basolateral amygdala. NeuroToxicology, 2014, 44, 335-343.	3.0	29
27	ASIC1a Activation Enhances Inhibition in the Basolateral Amygdala and Reduces Anxiety. Journal of Neuroscience, 2014, 34, 3130-3141.	3.6	46
28	The recovery of acetylcholinesterase activity and the progression of neuropathological and pathophysiological alterations in the rat basolateral amygdala after soman-induced status epilepticus: Relation to anxiety-like behavior. Neuropharmacology, 2014, 81, 64-74.	4.1	48
29	Reduced GABAergic Inhibition in the Basolateral Amygdala and the Development of Anxiety-Like Behaviors after Mild Traumatic Brain Injury. PLoS ONE, 2014, 9, e102627.	2.5	104
30	\hat{l}_{\pm} ₇ -Containing nicotinic acetylcholine receptors on interneurons of the basolateral amygdala and their role in the regulation of the network excitability. Journal of Neurophysiology, 2013, 110, 2358-2369.	1.8	61
31	Acetylcholinesterase inhibition in the basolateral amygdala plays a key role in the induction of status epilepticus after soman exposure. NeuroToxicology, 2013, 38, 84-90.	3.0	39
32	Presynaptic facilitation of glutamate release in the basolateral amygdala: A mechanism for the anxiogenic and seizurogenic function of GluK1 receptors. Neuroscience, 2012, 221, 157-169.	2.3	56
33	Regulation of the Fear Network by Mediators of Stress: Norepinephrine Alters the Balance between Cortical and Subcortical Afferent Excitation of the Lateral Amygdala. Frontiers in Behavioral Neuroscience, 2011, 5, 23.	2.0	40
34	The Importance of Reporting Housing and Husbandry in Rat Research. Frontiers in Behavioral Neuroscience, 2011, 5, 38.	2.0	62
35	Localization of Mineralocorticoid Receptors at Mammalian Synapses. PLoS ONE, 2010, 5, e14344.	2.5	60
36	Stress at the Synapse: Signal Transduction Mechanisms of Adrenal Steroids at Neuronal Membranes. Science Signaling, 2009, 2, re5.	3.6	88

#	Article	IF	CITATIONS
37	Dopamine Oppositely Modulates Synaptic Integration in Striosome and Matrix Striatal Spiny Neurons. SSRN Electronic Journal, 0, , .	0.4	1