Yongping Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4219704/publications.pdf

Version: 2024-02-01

1937685 1588992 25 75 4 8 citations g-index h-index papers 25 25 25 82 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	In Situ Controlled Surface Microstructure of 3D Printed Ti Alloy to Promote Its Osteointegration. Materials, 2019, 12, 815.	2.9	14
2	Experimental Investigation and Optimal 3D Bioprinting Parameters of SA-Gel Porous Cartilage Scaffold. Applied Sciences (Switzerland), 2020, 10, 768.	2.5	13
3	Study on linear bio-structure print process based on alginate bio-ink in 3D bio-fabrication. Bio-Design and Manufacturing, 2020, 3, 109-121.	7.7	8
4	Multidisciplinary design optimization for vehicle handling stability of steering-by-wire system. Journal of Supercomputing, 2019, 75, 2964-2985.	3.6	7
5	Studying endothelial cell shedding and orientation using adaptive perfusionâ€culture in a microfluidic vascular chip. Biotechnology and Bioengineering, 2021, 118, 963-978.	3.3	4
6	Design and 3D Printing of Interbody Fusion Cage Based on TPMS Porous Structure. Applied Sciences (Switzerland), 2021, 11, 11149.	2.5	4
7	Modeling and simulation of loader working device based on SimMechanics., 2011,,.		3
8	MEMS stochastic model order reduction method based on polynomial chaos expansion. Microsystem Technologies, 2016, 22, 993-1003.	2.0	3
9	Prediction Method of Underwater Acoustic Transmission Loss Based on Deep Belief Net Neural Network. Applied Sciences (Switzerland), 2021, 11, 4896.	2.5	3
10	Study on Underwater Target Tracking Technology Based on an LSTM–Kalman Filtering Method. Applied Sciences (Switzerland), 2022, 12, 5233.	2.5	3
11	Metal Deposition Induced by the Step Region of Si (111)-(7 $ ilde{A}-$ 7) Surface. Coatings, 2021, 11, 281.	2.6	2
12	Scattering of Magnetoacoustic Waves and Dynamic Stress Concentration around Double Openings in Piezomagnetic Composites. Materials, 2021, 14, 6878.	2.9	2
13	Gradient Printing Alginate Herero Gel Microspheres for Three-Dimensional Cell Culture. Materials, 2022, 15, 2305.	2.9	2
14	The predictive compensation path research of the micro tube fabrication process. Microsystem Technologies, 2016, 22, 2209-2222.	2.0	1
15	Exploring the Dual Characteristics of CH3OH Adsorption to Metal Atomic Structures on Si (111)-7 × 7 Surface. Molecules, 2021, 26, 5824.	3.8	1
16	MEMS Dynamic Characteristics Analysis of Electrostatic Microbeams for Building Structure Monitoring. Advances in Civil Engineering, 2022, 2022, 1-8.	0.7	1
17	Personalized Artificial Tibia Bone Structure Design and Processing Based on Laser Powder Bed Fusion. Machines, 2022, 10, 205.	2.2	1
18	Electroelastic Coupled-Wave Scattering and Dynamic Stress Concentration of Triangular Defect Piezoceramics. Actuators, 2022, 11, 106.	2.3	1

#	Article	IF	CITATION
19	Angular Displacement Control for Timoshenko Beam by Optimized Traveling Wave Method. Aerospace, 2022, 9, 259.	2.2	1
20	Magnesium-Containing Silicate Bioceramic Degradable Intramedullary Nail for Bone Fractures. Crystals, 2022, 12, 974.	2.2	1
21	Micro-tube fabricating path compensation method research. International Journal of Advanced Manufacturing Technology, 2016, 85, 2277-2286.	3.0	0
22	Magnetic enhancement and nitriding process of Fe atomic layers on Si 111-7Â×Â7-CH3OH surface. Materials Letters, 2022, 306, 130902.	2.6	0
23	Influence Analysis of Internal Solitary Wave on Towed Line Array Shape and Compensation Strategy. Acoustics Australia, 0, , 1.	2.4	O
24	Stress Intensity Factor and Shape Coefficient Correction of Non-Penetrating Three-Dimensional Crack for Brittle Ampoule Bottle with V-Shaped Notch. Applied Sciences (Switzerland), 2022, 12, 5246.	2.5	0
25	Magnetoacoustic Wave Scattering and Dynamic Stress Concentration around the Elliptical Opening in Exponential-Gradient Piezomagnetic Materials. Materials, 2022, 15, 4564.	2.9	0