
Almerinda Di Benedetto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4219656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the flammable behavior of non-traditional dusts: Dimensionless numbers evaluation for nylon 6,6 short fibers. Journal of Loss Prevention in the Process Industries, 2022, 78, 104815.	1.7	6
2	On the pyrotechnic ignitors role in dust explosion testing: Comparison between 20 L and 1Âm ³ explosion vessels. Process Safety Progress, 2021, 40, 289-295.	0.4	13
3	Effect of turbulence spatial distribution on the deflagration index: Comparison between 20ÂL and 1Âm3 vessels. Journal of Loss Prevention in the Process Industries, 2021, 71, 104484.	1.7	15
4	The Issue of Solid-Solid Contact in Catalytic Soot Oxidation and the Benefits of Catalyst Nanostructuring to Regeneration of Catalytic Diesel Particulate Filters. , 2021, , 155-187.		1
5	CFD Simulation of the Dispersion of Binary Dust Mixtures in the 20ÂL Vessel. Journal of Loss Prevention in the Process Industries, 2020, 67, 104231.	1.7	20
6	CFD simulations of dust dispersion in the 1Âm3 explosion vessel. Journal of Loss Prevention in the Process Industries, 2020, 68, 104274.	1.7	11
7	Ignition mechanism of flammable dust and dust mixtures: An insight through thermogravimetric/differential scanning calorimetry analysis. AICHE Journal, 2020, 66, e16256.	1.8	8
8	Synergistic behavior of flammable dust mixtures: A novel classification. Journal of Hazardous Materials, 2020, 397, 122784.	6.5	14
9	Using CFD Simulation as a Tool to Identify Optimal Operating Conditions for Regeneration of a Catalytic Diesel Particulate Filter. Applied Sciences (Switzerland), 2019, 9, 3453.	1.3	29
10	Study of the explosible properties of textile dusts. Journal of Loss Prevention in the Process Industries, 2018, 54, 110-122.	1.7	20
11	Combined effects of soot load and catalyst activity on the regeneration dynamics of catalytic diesel particulate filters. AICHE Journal, 2018, 64, 1714-1722.	1.8	62
12	Volatile point of dust mixtures and hybrid mixtures. Journal of Loss Prevention in the Process Industries, 2018, 56, 370-377.	1.7	19
13	Ceria oated diesel particulate filters for continuous regeneration. AICHE Journal, 2017, 63, 3442-3449.	1.8	76
14	Explosion behavior of ammonia and ammonia/methane in oxygenâ€enriched air. Process Safety Progress, 2017, 36, 368-371.	0.4	8
15	Operating Map for Regeneration of a Catalytic Diesel Particulate Filter. Industrial & Engineering Chemistry Research, 2016, 55, 11052-11061.	1.8	52
16	Catalytic diesel particulate filters with highly dispersed ceria: Effect of the soot-catalyst contact on the regeneration performance. Applied Catalysis B: Environmental, 2016, 197, 116-124.	10.8	112
17	Explosion of lycopodium-nicotinic acid–methane complex hybrid mixtures. Journal of Loss Prevention in the Process Industries, 2015, 36, 505-508.	1.7	18
18	Theoretical analysis of anomalous explosion behavior for H 2 /CO/O 2 /N 2 and CH 4 /O 2 /N 2 /CO 2 mixtures in the light of combustion-induced rapid phase transition. International Journal of Hydrogen Energy, 2015, 40, 8239-8247.	3.8	15

Almerinda Di Benedetto

#	Article	IF	CITATIONS
19	Modeling and simulation of soot combustion dynamics in a catalytic diesel particulate filter. Chemical Engineering Science, 2015, 137, 69-78.	1.9	87
20	CuO/CeO 2 based monoliths for CO preferential oxidation in H 2 -rich streams. Chemical Engineering Journal, 2015, 279, 983-993.	6.6	32
21	On the explosion and flammability behavior of mixtures of combustible dusts. Chemical Engineering Research and Design, 2015, 94, 410-419.	2.7	37
22	A fanâ€equipped reactor for dust explosion tests. AICHE Journal, 2015, 61, 1572-1580.	1.8	7
23	Effect of the nozzle type on the integrity of dust particles in standard explosion tests. Powder Technology, 2015, 279, 203-208.	2.1	58
24	CFD modeling and simulation of turbulent fluid flow and dust dispersion in the 20-L explosion vessel equipped with the perforated annular nozzle. Journal of Loss Prevention in the Process Industries, 2015, 38, 204-213.	1.7	30
25	Start-up behavior of a LaMnO3 partially coated monolithic combustor at high pressure. Catalysis Today, 2015, 242, 200-210.	2.2	23
26	High pressure methane catalytic combustion over novel partially coated LaMnO3-based monoliths. Chemical Engineering Journal, 2015, 259, 381-390.	6.6	48
27	Transient behavior of structured LaMnO3 catalyst during methane combustion at high pressure. Chemical Engineering Science, 2014, 116, 350-358.	1.9	35
28	The effect of the hydrogen presence on combustion-induced rapid phase transition of CO/O2/N2 mixtures. International Journal of Hydrogen Energy, 2013, 38, 16463-16470.	3.8	17
29	The thermal/thermodynamic theory of flammability: The adiabatic flammability limits. Chemical Engineering Science, 2013, 99, 265-273.	1.9	27
30	Modelling of the effect of size on flocculent dust explosions. Journal of Loss Prevention in the Process Industries, 2013, 26, 1634-1638.	1.7	19
31	High pressure kinetics of CH4, CO and H2 combustion over LaMnO3 catalyst. Applied Catalysis B: Environmental, 2013, 134-135, 110-122.	10.8	25
32	Reconsidering the flammability diagram for CH4/O2/N2 and CH4/O2/CO2 mixtures in light of combustion-induced Rapid Phase Transition. Chemical Engineering Science, 2012, 84, 142-147.	1.9	53
33	Analysis of an Explosion in a Wool-Processing Plant. Industrial & Engineering Chemistry Research, 2012, 51, 7713-7718.	1.8	12
34	High-Pressure Methane Combustion over a Perovskyte Catalyst. Industrial & Engineering Chemistry Research, 2012, 51, 7547-7558.	1.8	37
35	Combined Effect of Ignition Energy and Initial Turbulence on the Explosion Behavior of Lean Gas/Dust-Air Mixtures. Industrial & Engineering Chemistry Research, 2012, 51, 7663-7670.	1.8	61
36	Explosions of Syngas/CO ₂ Mixtures in Oxygen-Enriched Air. Industrial & Engineering Chemistry Research, 2012, 51, 7671-7678.	1.8	56

#	Article	IF	CITATIONS
37	Combustion-Induced Rapid-Phase Transition (cRPT) in CH ₄ /CO ₂ /O ₂ -Enriched Mixtures. Energy & Fuels, 2012, 26, 4799-4803.	2.5	10
38	Sensitivity to the Presence of the Combustion Submodel for Large Eddy Simulation of Transient Premixed Flame–Vortex Interactions. Industrial & Engineering Chemistry Research, 2012, 51, 7704-7712.	1.8	47
39	Effect of diluents on rapid phase transition of water induced by combustion. AICHE Journal, 2012, 58, 2810-2819.	1.8	41
40	Large Eddy Simulation of transient premixed flame–vortex interactions in gas explosions. Chemical Engineering Science, 2012, 71, 539-551.	1.9	93
41	Bifurcation analysis of the effect of hydrogen addition on the dynamic behavior of lean premixed pre-vaporized ethanol combustion. International Journal of Hydrogen Energy, 2012, 37, 6922-6932.	3.8	28
42	Explosion behavior of hydrogen–methane/air mixtures. Journal of Loss Prevention in the Process Industries, 2012, 25, 443-447.	1.7	161
43	Anomalous behavior during explosions of CH4 in oxygen-enriched air. Combustion and Flame, 2011, 158, 2214-2219.	2.8	53
44	Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles. Journal of Hazardous Materials, 2010, 180, 71-78.	6.5	86
45	Effect of geometry on the thermal behavior of catalytic micro-combustors. Catalysis Today, 2010, 155, 116-122.	2.2	39
46	Prevention and mitigation of dust and hybrid mixture explosions. Process Safety Progress, 2010, 29, 17-21.	0.4	55
47	Steady-State Multiplicity in Catalytic Microcombustors. Industrial & Engineering Chemistry Research, 2010, 49, 2130-2134.	1.8	4
48	Using Large Eddy Simulation for understanding vented gas explosions in the presence of obstacles. Journal of Hazardous Materials, 2009, 169, 435-442.	6.5	121
49	A novel catalytic-homogenous micro-combustor. Catalysis Today, 2009, 147, S156-S161.	2.2	34
50	The design of duct venting of gas explosions. Process Safety Progress, 2008, 27, 164-172.	0.4	11
51	Effect of the Re number on heat and mass transport in a catalytic monolith. Catalysis Today, 2006, 117, 498-505.	2.2	6
52	The effect of support morphology on the reaction of oxidative dehydrogenation of ethane to ethylene at short contact times. Catalysis Today, 2005, 105, 551-559.	2.2	24
53	The mitigation of pressure piling by divergent connections. Process Safety Progress, 2005, 24, 310-315.	0.4	10
54	Modeling ethane oxy-dehydrogenation over monolithic combustion catalysts. AICHE Journal, 2004, 50, 2233-2245.	1.8	14

#	Article	IF	CITATIONS
55	Temperature excursions during the transient behaviour of high temperature catalytic combustion monoliths. Catalysis Today, 2003, 83, 171-182.	2.2	11
56	Heat and mass fluxes in presence of superficial reaction in a not completely developed laminar flow. Chemical Engineering Science, 2003, 58, 1079-1086.	1.9	13
57	Modelling attrition of limestone during calcination and sulfation in a fluidized bed reactor. Powder Technology, 1998, 95, 119-128.	2.1	50