Yimin A Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4219093/publications.pdf

Version: 2024-02-01

159358 133063 3,804 59 30 59 h-index citations g-index papers 59 59 59 6123 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nature Energy, 2018, 3, 936-943.	19.8	531
2	Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nature Energy, 2019, 4, 957-968.	19.8	349
3	Spatial control of defect creation in graphene at the nanoscale. Nature Communications, 2012, 3, 1144.	5.8	305
4	Dynamics of Single Fe Atoms in Graphene Vacancies. Nano Letters, 2013, 13, 1468-1475.	4.5	228
5	Large Single Crystals of Graphene on Melted Copper Using Chemical Vapor Deposition. ACS Nano, 2012, 6, 5010-5017.	7.3	218
6	Superstructures generated from truncated tetrahedral quantum dots. Nature, 2018, 561, 378-382.	13.7	143
7	Structural Reconstruction of the Graphene Monovacancy. ACS Nano, 2013, 7, 4495-4502.	7.3	131
8	Rational Synthesis of Silver Vanadium Oxides/Polyaniline Triaxial Nanowires with Enhanced Electrochemical Property. Nano Letters, 2011, 11, 4992-4996.	4.5	111
9	Biomemristors as the next generation bioelectronics. Nano Energy, 2020, 75, 104938.	8.2	110
10	Synaptic devices based neuromorphic computing applications in artificial intelligence. Materials Today Physics, 2021, 18, 100393.	2.9	110
11	Graphene - MoS2 ensembles to reduce friction and wear in DLC-Steel contacts. Carbon, 2019, 146, 524-527.	5.4	108
12	Reverse Micelle Synthesis of Coâ^'Al LDHs: Control of Particle Size and Magnetic Properties. Chemistry of Materials, 2011, 23, 171-180.	3.2	92
13	Single Lithium-Ion Conducting Solid Polymer Electrolyte with Superior Electrochemical Stability and Interfacial Compatibility for Solid-State Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7249-7256.	4.0	88
14	Synthesis and separation of dyesvia Ni@reduced graphene oxide nanostructures. Journal of Materials Chemistry, 2012, 22, 1876-1883.	6.7	83
15	Atomic Structure of Interconnected Few-Layer Graphene Domains. ACS Nano, 2011, 5, 6610-6618.	7.3	77
16	Revealing mechanism responsible for structural reversibility of single-crystal VO2 nanorods upon lithiation/delithiation. Nano Energy, 2017, 36, 197-205.	8.2	65
17	Visualizing Redox Dynamics of a Single Ag/AgCl Heterogeneous Nanocatalyst at Atomic Resolution. ACS Nano, 2016, 10, 3738-3746.	7.3	61
18	From Memristive Materials to Neural Networks. ACS Applied Materials & 1, 10, 12, 54243-54265.	4.0	56

#	Article	IF	CITATIONS
19	CO2 transformation to multicarbon products by photocatalysis and electrocatalysis. Materials Today Advances, 2020, 6, 100071.	2.5	55
20	Aligned Rectangular Few-Layer Graphene Domains on Copper Surfaces. Chemistry of Materials, 2011, 23, 4543-4547.	3.2	51
21	A comprehensive review of carbons anode for potassium-ion battery: fast kinetic, structure stability and electrochemical. Journal of Power Sources, 2021, 484, 229244.	4.0	48
22	Highly dispersed Fe-Nx active sites on Graphitic-N dominated porous carbon for synergetic catalysis of oxygen reduction reaction. Carbon, 2021, 171, 1-9.	5.4	46
23	Semi-artificial Photosynthetic CO ₂ Reduction through Purple Membrane Re-engineering with Semiconductor. Journal of the American Chemical Society, 2019, 141, 11811-11815.	6.6	44
24	Lightâ€Gated Synthetic Protocells for Plasmonâ€Enhanced Chemiosmotic Gradient Generation and ATP Synthesis. Angewandte Chemie - International Edition, 2019, 58, 4896-4900.	7.2	41
25	An insight into the initial Coulombic efficiency of carbon-based anode materials for potassium-ion batteries. Chemical Engineering Journal, 2022, 428, 131093.	6.6	38
26	Versatile memristor for memory and neuromorphic computing. Nanoscale Horizons, 2022, 7, 299-310.	4.1	38
27	Non–zero-crossing current-voltage hysteresis behavior in memristive system. Materials Today Advances, 2020, 6, 100056.	2.5	37
28	Ultrafine Pt cluster and RuO ₂ heterojunction anode catalysts designed for ultra-low Pt-loading anion exchange membrane fuel cells. Nanoscale Horizons, 2020, 5, 316-324.	4.1	34
29	Multistate resistive switching behaviors for neuromorphic computing in memristor. Materials Today Advances, 2021, 9, 100125.	2.5	33
30	3-Aryl-3-(trifluoromethyl)diazirines as Versatile Photoactivated "Linker―Molecules for the Improved Covalent Modification of Graphitic and Carbon Nanotube Surfaces. Chemistry of Materials, 2011, 23, 3740-3751.	3.2	32
31	Probing Electrochemical Mg-Ion Activity in MgCr _{2–<i>x</i>} V <i>_x</i> O ₄ Spinel Oxides. Chemistry of Materials, 2020, 32, 1162-1171.	3.2	31
32	A Battery-Like Self-Selecting Biomemristor from Earth-Abundant Natural Biomaterials. ACS Applied Bio Materials, 2021, 4, 1976-1985.	2.3	30
33	Electron Paramagnetic Resonance Investigation of Purified Catalyst-free Single-Walled Carbon Nanotubes. ACS Nano, 2010, 4, 7708-7716.	7. 3	29
34	Structural Distortions in Few-Layer Graphene Creases. ACS Nano, 2011, 5, 9984-9991.	7.3	29
35	Shape and property control of Mn doped ZnSe quantum dots: from branched to spherical. Journal of Materials Chemistry, 2012, 22, 417-424.	6.7	24
36	Spanish-dagger shaped CoP blooms decorated N-doped carbon branch anode for high-performance lithium and sodium storage. Electrochimica Acta, 2021, 388, 138628.	2.6	23

#	Article	IF	Citations
37	Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals. Nanotechnology, 2011, 22, 195603.	1.3	20
38	In-situ Multimodal Imaging and Spectroscopy of Mg Electrodeposition at Electrode-Electrolyte Interfaces. Scientific Reports, 2017, 7, 42527.	1.6	20
39	Tailorable Exciton Transport in Doped Peptide–Amphiphile Assemblies. ACS Nano, 2017, 11, 9112-9118.	7.3	19
40	In Situ Monitoring of the Growth of Nickel, Manganese, and Cobalt Hydroxide Precursors during Co-Precipitation Synthesis of Li-Ion Cathode Materials. Journal of the Electrochemical Society, 2018, 165, A3077-A3083.	1.3	18
41	Passive Filters for Nonvolatile Storage Based on Capacitive-Coupled Memristive Effects in Nanolayered Organic–Inorganic Heterojunction Devices. ACS Applied Nano Materials, 2020, 3, 5045-5052.	2.4	18
42	Two-dimensional materials for electrochemical CO ₂ reduction: materials, <i>in situ</i> /i>/operandocharacterizations, and perspective. Nanoscale, 2021, 13, 19712-19739.	2.8	18
43	A True Random Number Generator Based on Ionic Liquid Modulated Memristors. ACS Applied Electronic Materials, 2021, 3, 2380-2388.	2.0	17
44	Adjustable Leaky-Integrate-and-fire neurons based on memristor-coupled capacitors. Materials Today Advances, 2021, 12, 100192.	2.5	15
45	Tuning Overall Water Splitting on an Electrodeposited NiCoFeP Films. ChemElectroChem, 2021, 8, 539-546.	1.7	14
46	Raw cellulose/polyvinyl alcohol blending separators prepared by phase inversion for high-performance supercapacitors. Nanotechnology, 2021, 32, 095403.	1.3	14
47	Activating Surface Lattice Oxygen of a Cu/Zn _{1<i>–x</i>} Cu _{<i>x</i>} O Catalyst through Interface Interactions for CO Oxidation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 9882-9890.	4.0	13
48	Lightâ€Gated Synthetic Protocells for Plasmonâ€Enhanced Chemiosmotic Gradient Generation and ATP Synthesis. Angewandte Chemie, 2019, 131, 4950-4954.	1.6	12
49	Engineering Porous Quasiâ€Spherical Feâ^'Nâ^'C Nanocatalysts with Robust Oxygen Reduction Performance for Znâ€Air Battery Application. ChemNanoMat, 2020, 6, 1782-1788.	1.5	11
50	Intercalation of Ca into a Highly Defective Manganese Oxide at Room Temperature. Chemistry of Materials, 2022, 34, 836-846.	3.2	10
51	Enhanced Structural, Electrochemical, and Electrode Kinetic Properties of Na _{0.5} Ni _{0.2} Mg _{0.1} Mn _{0.7} O ₂ Material for Sodium-Ion Battery Applications. Industrial & Sodium-Ion Battery Applications. Industrial & Sodium-Ion Battery Research, 2019, 58, 22804-22810.	1.8	9
52	Recent progress in electrochemical performance of carbon-based anodes for potassium-ion batteries based on first principles calculations. Nanotechnology, 2021, 32, 472003.	1.3	9
53	The interplay between selective etching induced cation defects and active oxygen species for volatile organic compounds degradation. Journal of Colloid and Interface Science, 2022, 625, 363-372.	5. O	8
54	Soft Biomaterials Based Flexible Artificial Synapse for Neuromorphic Computing. Advanced Electronic Materials, 2022, 8, .	2.6	8

#	Article	IF	CITATIONS
55	Probing Mg Intercalation in the Tetragonal Tungsten Bronze Framework V ₄ Nb ₁₈ O ₅₅ . Inorganic Chemistry, 2020, 59, 9783-9797.	1.9	7
56	Electrocatalytic Hydrolysisâ€Modulated Multistate Resistive Switching Behaviors in Memristors. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000655.	0.8	5
57	Mechanical response of few-layer graphene films on copper foils. Scripta Materialia, 2012, 67, 273-276.	2.6	4
58	Twinned nanostructure of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>VO</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>	mn 1.₄ /mm	nl:m s ub>
59	Catalyst design strategies for aqueous N2 electroreduction. Applied Materials Today, 2021, 25, 101184.	2.3	3