Michael Schmitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4218853/publications.pdf

Version: 2024-02-01

277 papers 11,429 citations

56 h-index 92 g-index

285 all docs

 $\begin{array}{c} 285 \\ \text{docs citations} \end{array}$

times ranked

285

11066 citing authors

#	Article	IF	Citations
1	Intraoperative multimodal imaging. , 2022, , 561-581.		1
2	Identification of inflammatory markers in eosinophilic cells of the immune system: fluorescence, Raman and CARS imaging can recognize markers but differently. Cellular and Molecular Life Sciences, 2022, 79, 1.	5.4	7
3	Simultaneous Infrared Spectroscopy, Raman Spectroscopy, and Luminescence Sensing: A Multispectroscopic Analytical Platform. ACS Measurement Science Au, 2022, 2, 157-166.	4.4	6
4	Boosting Efficiency in Lightâ€Driven Water Splitting by Dynamic Irradiation through Synchronizing Reaction and Transport Processes**. ChemSusChem, 2022, 15, .	6.8	8
5	Synthesis and Characterization of Metallopolymer Networks Featuring Triple Shape-Memory Ability Based on Different Reversible Metal Complexes. Polymers, 2022, 14, 1833.	4.5	2
6	Multimodal optical coherence tomography, Raman spectroscopy and IR fundus imaging for in vivo retinal imaging. , 2022, , .		0
7	Shapeâ€Memory Metallopolymers Based on Two Orthogonal Metal–Ligand Interactions. Advanced Materials, 2021, 33, e2006655.	21.0	31
8	Characterization of a library of vitamin A-functionalized polymethacrylate-based nanoparticles for siRNA delivery. Polymer Chemistry, 2021, 12, 911-925.	3.9	5
9	FLIM data analysis based on Laguerre polynomial decomposition and machine-learning. Journal of Biomedical Optics, 2021, 26, .	2.6	3
10	Computational tissue staining of non-linear multimodal imaging using supervised and unsupervised deep learning. Biomedical Optics Express, 2021, 12, 2280.	2.9	23
11	In vivo coherent antiâ€Stokes Raman scattering microscopy reveals vitamin A distribution in the liver. Journal of Biophotonics, 2021, 14, e202100040.	2.3	3
12	Kinetic-Model-Free Analysis of Transient Absorption Spectra Enabled by 2D Correlation Analysis. Journal of Physical Chemistry Letters, 2021, 12, 4148-4153.	4. 6	4
13	Ultraâ€compact tunable fiber laser for coherent antiâ€Stokes Raman imaging. Journal of Raman Spectroscopy, 2021, 52, 1561-1568.	2.5	6
14	Multimodal Molecular Imaging and Identification of Bacterial Toxins Causing Mushroom Soft Rot and Cavity Disease. ChemBioChem, 2021, 22, 2901-2907.	2.6	11
15	Probing Protein Secondary Structure Influence on Active Centers with Hetero Two-Dimensional Correlation (Resonance) Raman Spectroscopy: A Demonstration on Cytochrome C. Applied Spectroscopy, 2021, 75, 1043-1052.	2.2	4
16	Multimodal Scanning Microscope Combining Optical Coherence Tomography, Raman Spectroscopy and Fluorescence Lifetime Microscopy for Mesoscale Label-Free Imaging of Tissue. Analytical Chemistry, 2021, 93, 11479-11487.	6. 5	5
17	A polyyne toxin produced by an antagonistic bacterium blinds and lyses a Chlamydomonad alga. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
18	A Study in Red: The Overlooked Role of Azoâ€Moieties in Polymeric Carbon Nitride Photocatalysts with Strongly Extended Optical Absorption. Chemistry - A European Journal, 2021, 27, 17188-17202.	3.3	4

#	Article	IF	CITATIONS
19	In-depth characterization of self-healing polymers based on π–π nteractions. Beilstein Journal of Organic Chemistry, 2021, 17, 2496-2504.	2.2	7
20	Dual crosslinked metallopolymers using orthogonal metal complexes as rewritable shape-memory polymers. Journal of Materials Chemistry A, 2021, 9, 15051-15058.	10.3	9
21	Spatially Resolving the Enhancement Effect in Surface-Enhanced Coherent Anti-Stokes Raman Scattering by Plasmonic Doppler Gratings. ACS Nano, 2021, 15, 809-818.	14.6	11
22	Multimodal nonlinear endomicroscopic imaging probe using a double-core double-clad fiber and focus-combining micro-optical concept. Light: Science and Applications, 2021, 10, 207.	16.6	38
23	Novel Biobased Selfâ€Healing Ionomers Derived from Itaconic Acid Derivates. Macromolecular Rapid Communications, 2021, 42, 2000636.	3.9	6
24	Biochemical Characterization of Mouse Retina of an Alzheimer's Disease Model by Raman Spectroscopy. ACS Chemical Neuroscience, 2020, 11, 3301-3308.	3.5	15
25	Imaging the invisible—Bioorthogonal Raman probes for imaging of cells and tissues. Journal of Biophotonics, 2020, 13, e202000129.	2.3	32
26	Comparison of standard and HD FT-IR with multimodal CARS/TPEF/SHG/FLIMS imaging in the detection of the early stage of pulmonary metastasis of murine breast cancer. Analyst, The, 2020, 145, 4982-4990.	3.5	5
27	Differential response of liver sinusoidal endothelial cells and hepatocytes to oleic and palmitic acid revealed by Raman and CARS imaging. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165763.	3.8	11
28	PC 2D-COS: A Principal Component Base Approach to Two-Dimensional Correlation Spectroscopy. Applied Spectroscopy, 2020, 74, 460-472.	2.2	8
29	1. Theoretical principles of Raman spectroscopy. , 2020, , 1-14.		1
30	Nonlinear Multimodal Imaging Characteristics of Early Septic Liver Injury in a Mouse Model of Peritonitis. Analytical Chemistry, 2019, 91, 11116-11121.	6.5	13
31	Multimodal Nonlinear Microscopy for Therapy Monitoring of Cold Atmospheric Plasma Treatment. Micromachines, 2019, 10, 564.	2.9	5
32	Theoretical principles of Raman spectroscopy. Physical Sciences Reviews, 2019, 4, .	0.8	17
33	Shape-Memory Metallopolymer Networks Based on a Triazole–Pyridine Ligand. Polymers, 2019, 11, 1889.	4.5	7
34	CARS-imaging guidance for fs-laser ablation precision surgery. Analyst, The, 2019, 144, 7310-7317.	3.5	9
35	Automatic labelâ€free detection of breast cancer using nonlinear multimodal imaging and the convolutional neural network ResNet50. Translational Biophotonics, 2019, 1, e201900003.	2.7	26
36	Nonresonant Raman spectroscopy of isolated human retina samples complying with laser safety regulations for in vivo measurements. Neurophotonics, 2019, 6, 1.	3.3	17

3

#	Article	IF	Citations
37	Semantic Segmentation of Non-linear Multimodal Images for Disease Grading of Inflammatory Bowel Disease: A SegNet-based Application. , 2019, , .		7
38	Introduction to the Fundamentals of Raman Spectroscopy. Springer Series in Surface Sciences, 2018, , 47-68.	0.3	4
39	Hydrogel-Embedded Model Photocatalytic System Investigated by Raman and IR Spectroscopy Assisted by Density Functional Theory Calculations and Two-Dimensional Correlation Analysis. Journal of Physical Chemistry A, 2018, 122, 2677-2687.	2.5	7
40	Urethanes as reversible covalent moieties in self-healing polymers. European Polymer Journal, 2018, 104, 45-50.	5.4	21
41	Advances in laser concepts for multiplex, coherent Raman scattering micro-spectroscopy and imaging. TrAC - Trends in Analytical Chemistry, 2018, 102, 103-109.	11.4	11
42	Investigation of Microalgal Carotenoid Content Using Coherent Antiâ€Stokes Raman Scattering (CARS) Microscopy and Spontaneous Raman Spectroscopy. ChemPhysChem, 2018, 19, 1048-1055.	2.1	9
43	Do You Get What You See? Understanding Molecular Selfâ€Healing. Chemistry - A European Journal, 2018, 24, 2493-2502.	3.3	18
44	Acetoxymethyl Concept for Intracellular Administration of Carbon Monoxide with Mn(CO) ₃ â€Based PhotoCORMs. Chemistry - A European Journal, 2018, 24, 3321-3329.	3.3	11
45	Remendable polymers via reversible Diels–Alder cycloaddition of anthraceneâ€containing copolymers with fullerenes. Journal of Applied Polymer Science, 2018, 135, 45916.	2.6	15
46	Palladiumâ€SCS Pincer Complexes as Crossâ€Linking Moieties in Selfâ€Healing Metallopolymers. Macromolecular Rapid Communications, 2018, 39, e1800495.	3.9	9
47	Invited Article: Comparison of hyperspectral coherent Raman scattering microscopies for biomedical applications. APL Photonics, 2018, 3, 092404.	5.7	9
48	Invited Article: A rigid coherent anti-Stokes Raman scattering endoscope with high resolution and a large field of view. APL Photonics, $2018, 3, .$	5.7	29
49	Synthesis and solution stability of water-soluble îº ² N,îºO-bis(3,5-dimethylpyrazolyl)ethanol manganese(<scp>i</scp>) tricarbonyl bromide (CORM-ONN1). Dalton Transactions, 2017, 46, 1684-1693.	3.3	18
50	Increased stability in selfâ€healing polymer networks based on reversible Michael addition reactions. Journal of Applied Polymer Science, 2017, 134, .	2.6	21
51	All-fiber optical parametric oscillator for bio-medical imaging applications. , 2017, , .		3
52	Realâ€ŧime Raman and SRS imaging of living human macrophages reveals cellâ€ŧoâ€cell heterogeneity and dynamics of lipid uptake. Journal of Biophotonics, 2017, 10, 1217-1226.	2.3	38
53	Polymeric Halogenâ€Bondâ€Based Donor Systems Showing Selfâ€Healing Behavior in Thin Films. Angewandte Chemie - International Edition, 2017, 56, 4047-4051.	13.8	79
54	Non-linear multimodal imaging for disease diagnostics and treatment monitoring., 2017,,.		1

#	Article	IF	CITATIONS
55	Self-healing Functional Polymers: Optical Property Recovery of Conjugated Polymer Films by Uncatalyzed Imine Metathesis. Macromolecules, 2017, 50, 3789-3795.	4.8	26
56	A Water-Soluble Mn(CO)3-Based and Non-Toxic PhotoCORM for Administration of Carbon Monoxide Inside of Cells. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 2057-2062.	1.2	10
57	Intrinsic self-healing polymers with a high E-modulus based on dynamic reversible urea bonds. NPG Asia Materials, 2017, 9, e420-e420.	7.9	97
58	Polymerbasierte Halogenbr $\tilde{A}^{1}\!\!/\!\!$ ckendonoren mit selbstheilenden Eigenschaften in Filmen. Angewandte Chemie, 2017, 129, 4105-4110.	2.0	14
59	Multiplex coherent anti-Stokes Raman scattering microspectroscopy of brain tissue with higher ranking data classification for biomedical imaging. Journal of Biomedical Optics, 2017, 22, 066005.	2.6	13
60	Markerfreie molekulare Bildgebung biologischer Zellen und Gewebe durch lineare und nichtlineare Ramanâ€spektroskopische AnsÃæe. Angewandte Chemie, 2017, 129, 4458-4500.	2.0	8
61	Labelâ€Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches. Angewandte Chemie - International Edition, 2017, 56, 4392-4430.	13.8	177
62	Fully automated all-fiber widely-tunable optical-parametric-oscillator laser system., 2017,,.		0
63	Endoscopic fiber probe for nonlinear spectroscopic imaging. Optica, 2017, 4, 496.	9.3	78
64	Dual-focus coherent anti-Stokes Raman scattering microscopy using a compact two-beam fiber laser source. Optics Letters, 2017, 42, 183.	3.3	4
65	Widely tunable, fully automated, all-fiber dual-color laser system for stimulated Raman imaging. , 2017, , .		0
66	Light sheet Raman micro-spectroscopy. Optica, 2016, 3, 452.	9.3	45
67	Multimodal nonlinear microscopy of biopsy specimen: towards intraoperative diagnostics (Conference Presentation)., 2016,,.		0
68	Comparing Raman and fluorescence lifetime spectroscopy from human atherosclerotic lesions using a bimodal probe. Journal of Biophotonics, 2016, 9, 958-966.	2.3	18
69	Multimodal nonlinear microscopy of head and neck carcinoma — toward surgery assisting frozen section analysis. Head and Neck, 2016, 38, 1545-1552.	2.0	40
70	Beyond endoscopic assessment in inflammatory bowel disease: real-time histology of disease activity by non-linear multimodal imaging. Scientific Reports, 2016, 6, 29239.	3.3	46
71	Selfâ€Healing Polymer Networks Based on Reversible Michael Addition Reactions. Macromolecular Chemistry and Physics, 2016, 217, 2541-2550.	2.2	45
72	Systematic evaluation of the biological variance within the Raman based colorectal tissue diagnostics. Journal of Biophotonics, 2016, 9, 533-541.	2.3	19

#	Article	IF	CITATIONS
73	Hepatic Vitamin A Content Investigation Using Coherent <i>Anti</i> أذ€Stokes Raman Scattering Microscopy. ChemPhysChem, 2016, 17, 4043-4051.	2.1	8
74	Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool. BMC Cancer, 2016, 16, 534.	2.6	66
75	Elucidation of the COâ€Release Kinetics of CORMâ€A1 by Means of Vibrational Spectroscopy. ChemPhysChem, 2016, 17, 985-993.	2.1	17
76	Molecular self-healing mechanisms between C ₆₀ -fullerene and anthracene unveiled by Raman and two-dimensional correlation spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 17973-17982.	2.8	14
77	Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence. Planta, 2016, 243, 935-945.	3.2	101
78	CORM-EDE1: A Highly Water-Soluble and Nontoxic Manganese-Based photoCORM with a Biogenic Ligand Sphere. Inorganic Chemistry, 2016, 55, 104-113.	4.0	39
79	Fiber probe for nonlinear imaging applications. Journal of Biophotonics, 2016, 9, 138-143.	2.3	23
80	Four-wave mixing based light sources for real-world biomedical applications of coherent Raman microscopy. Proceedings of SPIE, 2016, , .	0.8	2
81	Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications. Chemical Society Reviews, 2016, 45, 1819-1849.	38.1	151
82	Fiberâ€based light sources for biomedical applications of coherent antiâ€Stokes Raman scattering microscopy. Laser and Photonics Reviews, 2015, 9, 435-451.	8.7	61
83	Bessel beam CARS of axially structured samples. Scientific Reports, 2015, 5, 10991.	3.3	10
84	Two-dimensional Raman correlation spectroscopy reveals molecular structural changes during temperature-induced self-healing in polymers based on the Diels–Alder reaction. Physical Chemistry Chemical Physics, 2015, 17, 22587-22595.	2.8	38
85	Novel workflow for combining Raman spectroscopy and MALDI-MSI for tissue based studies. Analytical and Bioanalytical Chemistry, 2015, 407, 7865-7873.	3.7	35
86	Carbon monoxide release properties and molecular structures of phenylthiolatomanganese($<$ scp $>$ i $<$ lscp $>$) carbonyl complexes of the type [(OC) $<$ sub $>$ 4 $<$ lsub $>$ Mn(\hat{l}^1 /4 $-$ S-aryl)] $<$ sub $>$ 2 $<$ lsub $>$. Dalton Transactions, 2015, 44, 3020-3033.	3.3	18
87	Combined fiber probe for fluorescence lifetime and Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2015, 407, 8291-8301.	3.7	47
88	Multimodal Imaging Spectroscopy of Tissue. Annual Review of Analytical Chemistry, 2015, 8, 359-387.	5 . 4	55
89	Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert Review of Molecular Diagnostics, 2015, 15, 773-787.	3.1	176
90	Vibrational phase imaging in wide-field CARS for nonresonant background suppression. Optics Express, 2015, 23, 10756.	3.4	9

#	Article	IF	Citations
91	Spectrometer calibration protocol for Raman spectra recorded with different excitation wavelengths. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 149, 544-549.	3.9	55
92	Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications. Optics Express, 2015, 23, 23968.	3.4	71
93	Fiber-based dual-focus time-demultiplexed second harmonic generation microscopy. Optics Letters, 2015, 40, 2505.	3.3	4
94	Bessel beam coherent anti-Stokes Raman scattering microscopy. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1773.	2.1	10
95	Multimodal nonlinear imaging of atherosclerotic plaques differentiation of triglyceride and cholesterol deposits. Journal of Innovative Optical Health Sciences, 2014, 07, 1450027.	1.0	7
96	Modified bibenzimidazole ligands as spectator ligands in photoactive molecular functional Ru-polypyridine units? Implications from spectroscopy. Dalton Transactions, 2014, 43, 17659-17665.	3.3	6
97	Trapped in Imidazole: How to Accumulate Multiple Photoelectrons on a Blackâ€Absorbing Ruthenium Complex. Chemistry - A European Journal, 2014, 20, 3793-3799.	3.3	38
98	Monitoring the chemistry of self-healing by vibrational spectroscopy – current state and perspectives. Materials Today, 2014, 17, 57-69.	14.2	57
99	Resonance-Raman spectro-electrochemistry of intermediates in molecular artificial photosynthesis of bimetallic complexes. Chemical Communications, 2014, 50, 5227.	4.1	48
100	IR Spectroscopic Methods for the Investigation of the CO Release from CORMs. Journal of Physical Chemistry A, 2014, 118, 5381-5390.	2.5	42
101	Mesoporous silica particle embedded functional graphene oxide as an efficient platform for urea biosensing. Analytical Methods, 2014, 6, 6711-6720.	2.7	36
102	Interpreting CARS images of tissue within the C-H-stretching region. , 2014, , .		0
103	Evidence for SERRS Enhancement in the Spectra of Ruthenium Dye–Metal Nanoparticle Conjugates. Journal of Physical Chemistry C, 2013, 117, 1121-1129.	3.1	13
104	Deeper Understanding of Biological Tissue: Quantitative Correlation of MALDI-TOF and Raman Imaging. Analytical Chemistry, 2013, 85, 10829-10834.	6.5	54
105	Expanding Multimodal Microscopy by High Spectral Resolution Coherent Anti-Stokes Raman Scattering Imaging for Clinical Disease Diagnostics. Analytical Chemistry, 2013, 85, 6703-6715.	6.5	55
106	A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics. Analyst, The, 2013, 138, 4048.	3.5	44
107	Non-invasive depth profile imaging of the stratum corneum using confocal Raman microscopy: First insights into the method. European Journal of Pharmaceutical Sciences, 2013, 50, 601-608.	4.0	49
108	Resonance Raman Spectral Imaging of Intracellular Uptake of βâ€Carotene Loaded Poly(D, <scp>L</scp> â€lactideâ€ <i>co</i> palycolide) Nanoparticles. ChemPhysChem, 2013, 14, 155-161.	2.1	19

#	Article	IF	Citations
109	Raman Spectroscopic Imaging for the Realâ€Time Detection of Chemical Changes Associated with Docetaxel Exposure. ChemPhysChem, 2013, 14, 550-553.	2.1	17
110	Selfâ€Healing Polymer Coatings Based on Crosslinked Metallosupramolecular Copolymers. Advanced Materials, 2013, 25, 1634-1638.	21.0	319
111	Redox State Sensitive Spectroscopy of the Model Compound [(H-dcbpy) ₂ Ru ^{II} (NCS) ₂] ^{2â€"} (dcbpy =) Tj ETQq1 1 0.78431	4 1 3gB T /Ov	verlack 10 Tf
112	Multimodal nonlinear microscopic investigations on head and neck squamous cell carcinoma: Toward intraoperative imaging. Head and Neck, 2013, 35, E280-7.	2.0	44
113	The Many facets of Raman Spectroscopy in Biophotonics. , 2013, , .		1
114	Accumulating advantages, reducing limitations: Multimodal nonlinear imaging in biomedical sciences $\hat{a} \in \mathbb{C}^m$ The synergy of multiple contrast mechanisms. Journal of Biophotonics, 2013, 6, 887-904.	2.3	29
115	Response to the Comments by L. O. Björn on our Paper "Catalytic Efficiency of a Photoenzyme—An Adaptation to Natural Light Conditions― ChemPhysChem, 2013, 14, 2598-2600.	2.1	0
116	Disruption-free imaging by Raman spectroscopy reveals a chemical sphere with antifouling metabolites around macroalgae. Biofouling, 2012, 28, 687-696.	2.2	39
117	Classification of inflammatory bowel diseases by means of Raman spectroscopic imaging of epithelium cells. Journal of Biomedical Optics, 2012, 17, 0760301.	2.6	68
118	Ruthenium dye functionalized gold nanoparticles and their spectral responses. RSC Advances, 2012, 2, 4463.	3.6	18
119	Evaluation of Colloids and Activation Agents for Determination of Melamine Using UV-SERS. Journal of Physical Chemistry C, 2012, 116, 6083-6091.	3.1	34
120	Spectroscopic detection and quantification of heme and heme degradation products. Analytical and Bioanalytical Chemistry, 2012, 404, 2819-2829.	3.7	29
121	Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications. Journal of Biomedical Optics, 2012, 17, 040801.	2.6	137
122	Surface-enhanced Raman spectroscopy (SERS): progress and trends. Analytical and Bioanalytical Chemistry, 2012, 403, 27-54.	3.7	712
123	Lightâ€Induced Dynamics in Conjugated Bis(terpyridine) Ligands – A Case Study Toward Photoactive Coordination Polymers. Macromolecular Rapid Communications, 2012, 33, 481-497.	3.9	29
124	Towards automated segmentation of cells and cell nuclei in nonlinear optical microscopy. Journal of Biophotonics, 2012, 5, 878-888.	2.3	27
125	Catalytic Efficiency of a Photoenzyme—An Adaptation to Natural Light Conditions. ChemPhysChem, 2012, 13, 2013-2015.	2.1	22
126	Synthesis and photophysics of a novel photocatalyst for hydrogen production based on a tetrapyridoacridine bridging ligand. Chemical Physics, 2012, 393, 65-73.	1.9	27

#	Article	IF	CITATIONS
127	Combination of Patch Clamp and Raman Spectroscopy for Single-Cell Analysis. Analytical Chemistry, 2011, 83, 344-350.	6.5	10
128	Protein-Induced Excited-State Dynamics of Protochlorophyllide. Journal of Physical Chemistry A, 2011, 115, 7873-7881.	2.5	17
129	Excited-state annihilation in a homodinuclear ruthenium complex. Chemical Communications, 2011, 47, 3820.	4.1	11
130	Excited-State Dynamics of Protochlorophyllide Revealed by Subpicosecond Infrared Spectroscopy. Biophysical Journal, 2011, 100, 260-267.	0.5	11
131	Droplet formation via flow-through microdevices in Raman and surface enhanced Raman spectroscopy—concepts and applications. Lab on A Chip, 2011, 11, 3584.	6.0	66
132	Metal-Mediated Reaction Modeled on Nature: The Activation of Isothiocyanates Initiated by Zinc Thiolate Complexes. Inorganic Chemistry, 2011, 50, 3223-3233.	4.0	10
133	Checking and Improving Calibration of Raman Spectra using Chemometric Approaches. Zeitschrift Fur Physikalische Chemie, 2011, 225, 753-764.	2.8	68
134	Preface – The Many Facets of Raman Spectroscopy. Zeitschrift Fur Physikalische Chemie, 2011, 225, 643-646.	2.8	0
135	Wavelength-dependent photoproduct formation of phycocyanobilin in solution – Indications for competing reaction pathways. Chemical Physics Letters, 2011, 515, 163-169.	2.6	3
136	The impact of bromine substitution on the photophysical properties of a homodinuclear Ru–tpphz–Ru complex. Chemical Physics Letters, 2011, 516, 45-50.	2.6	7
137	Tuning of Photocatalytic Hydrogen Production and Photoinduced Intramolecular Electron Transfer Rates by Regioselective Bridging Ligand Substitution. ChemPhysChem, 2011, 12, 2101-2109.	2.1	93
138	Ramanâ€Spektroskopie. Biomedizinische Diagnostik. Chemie in Unserer Zeit, 2011, 45, 14-23.	0.1	2
139	Raman spectroscopy - An essential tool for biophotonics. , 2011, , .		1
140	Probing the structure and Franck–Condon region of protochlorophyllide <i>a</i> through analysis of the Raman and resonance Raman spectra. Journal of Raman Spectroscopy, 2010, 41, 414-423.	2.5	6
141	Introduction to the Fundamentals of Raman Spectroscopy. Springer Series in Optical Sciences, 2010, , 21-42.	0.7	11
142	Dynamics of charge separation in the excited-state chemistry of protochlorophyllide. Chemical Physics Letters, 2010, 492, 157-163.	2.6	18
143	Investigation on the Second Part of the Electromagnetic SERS Enhancement and Resulting Fabrication Strategies of Anisotropic Plasmonic Arrays. ChemPhysChem, 2010, 11, 1918-1924.	2.1	24
144	Photochemical Fate: The First Step Determines Efficiency of H ₂ Formation with a Supramolecular Photocatalyst. Angewandte Chemie - International Edition, 2010, 49, 3981-3984.	13.8	162

#	Article	IF	Citations
145	Quantitative mineral analysis using Raman spectroscopy and chemometric techniques. Journal of Raman Spectroscopy, 2010, 41, 684-689.	2.5	31
146	Investigation of substitution effects on novel Ru–dppz complexes by Raman spectroscopy in combination with DFT methods. Journal of Raman Spectroscopy, 2010, 41, 922-932.	2.5	25
147	Raman Spectroscopic Characterization of Single Cells. , 2010, , .		0
148	Photophysics Of Protochlorophyllide., 2010,,.		0
149	Localization Of The [sup 1]MLCT State Of Novel Ruthenium Polypyridine Complexes Via Resonance Raman Spectroscopy., 2010,,.		0
150	Photo-induced processes in new materials for electro-optical applications. Proceedings of SPIE, 2010, ,	0.8	1
151	The switch that wouldn't switch – unexpected luminescence from a ruthenium(ii)-dppz-complex in water. Dalton Transactions, 2010, 39, 2768.	3.3	39
152	Substitution-controlled ultrafast excited-state processes in Ru–dppz-derivatives. Physical Chemistry Chemical Physics, 2010, 12, 1357-1368.	2.8	62
153	Models for the Active Site in [FeFe] Hydrogenase with Iron-Bound Ligands Derived from Bis-, Tris-, and Tetrakis(mercaptomethyl)silanes. Inorganic Chemistry, 2010, 49, 10117-10132.	4.0	70
154	A Concept to Tailor Electron Delocalization: Applying QTAIM Analysis to Phenylâ^'Terpyridine Compounds. Journal of Physical Chemistry A, 2010, 114, 13163-13174.	2.5	37
155	Derivation of Correlation Functions to Predict Bond Properties of Phenylâ ² CH Bonds Based on Vibrational and sup 1 / sup H NMR Spectroscopic Quantities. Journal of Physical Chemistry A, 2010, 114, 10287-10296.	2.5	19
156	Synthesis and characterization of regioselective substituted tetrapyridophenazine ligands and their Ru(ii) complexes. Dalton Transactions, 2010, 39, 2359.	3.3	45
157	Continuous-wave solid-state two-Stokes Raman laser. Quantum Electronics, 2009, 39, 624-626.	1.0	13
158	Existing and future challenges of multi-dimensional microscopy and imaging for life sciences and biomedicine. , 2009, , .		0
159	Photophysics of an Intramolecular Hydrogenâ€Evolving Ru–Pd Photocatalyst. Chemistry - A European Journal, 2009, 15, 7678-7688.	3.3	132
160	Protochlorophyllide a: A Comprehensive Photophysical Picture. ChemPhysChem, 2009, 10, 144-150.	2.1	51
161	Synthesis, Characterization, and Electroâ€Optical Properties of Zn ^{ll} Complexes with Ï€â€Conjugated Terpyridine Ligands. ChemPhysChem, 2009, 10, 787-798.	2.1	49
162	Spectroscopic Investigation of the Ultrafast Photoinduced Dynamics in Ï€â€Conjugated Terpyridines. ChemPhysChem, 2009, 10, 910-919.	2.1	68

#	Article	IF	Citations
163	Resonance Raman Studies of Bis(terpyridine)ruthenium(II) Amino Acid Esters and Diesters. European Journal of Inorganic Chemistry, 2009, 2009, 3119-3126.	2.0	32
164	Synthesis and Photophysical Properties of 3,8â€Disubstituted 1,10â€Phenanthrolines and Their Ruthenium(II) Complexes. European Journal of Inorganic Chemistry, 2009, 2009, 4962-4971.	2.0	32
165	A comparative Raman and CARS imaging study of colon tissue. Journal of Biophotonics, 2009, 2, 303-312.	2.3	110
166	Different contrast information obtained from CARS and nonresonant FWM images. Journal of Raman Spectroscopy, 2009, 40, 941-947.	2.5	49
167	Prediction of Electron Densities, the Respective Laplacians, and Ellipticities in Bond-Critical Points of Phenylâ "CHâ" Bonds via Linear Relations to Parameters of Inherently Localized CD Stretching Vibrations and sup 1 / sup H NMR-Shifts. Journal of Physical Chemistry A, 2009, 113, 3210-3222.	2.5	25
168	Ruthenium polypyridine complexes of tris-(2-pyridyl)-1,3,5-triazineâ€"unusual building blocks for the synthesis of photochemical molecular devices. Dalton Transactions, 2009, , 4012.	3.3	35
169	Raman meets medicine: Raman spectroscopy: a powerful tool in biophotonics. Proceedings of SPIE, 2009, , .	0.8	О
170	Resonance Raman studies of photochemical molecular devices for multielectron storage. Journal of Raman Spectroscopy, 2008, 39, 557-559.	2.5	35
171	Synthesis and Characterisation of Poly(bipyridine)ruthenium Complexes as Building Blocks for Heterosupramolecular Arrays. European Journal of Inorganic Chemistry, 2008, 2008, 3310-3319.	2.0	61
172	Three-Dimensional Molecular Mapping of a Multiple Emulsion by Means of CARS Microscopy. Journal of Physical Chemistry B, 2008, 112, 1420-1426.	2.6	59
173	Zinc(II) Bisterpyridine Complexes: The Influence of the Cation on the π-Conjugation between Terpyridine and the Lateral Phenyl Substituent. Journal of Physical Chemistry C, 2008, 112, 18651-18660.	3.1	39
174	Experimental Observation of Different-Order Components of a Vibrational Wave Packet in a Bulk Dielectric Using High-Order Raman Scattering. Physical Review Letters, 2007, 98, 187402.	7.8	3
175	Wasserstoff durch mehrkernige Metallkomplexe. Nachrichten Aus Der Chemie, 2007, 55, 970-974.	0.0	1
176	Toward an understanding of the mode of action of fluoroquinolone drugs. Proceedings of SPIE, 2007,	0.8	0
177	UV Raman ImagingA Promising Tool for Astrobiology:Â Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites. Analytical Chemistry, 2007, 79, 1101-1108.	6.5	50
178	Structural Analysis of the Anti-Malaria Active Agent Chloroquine under Physiological Conditions. Journal of Physical Chemistry B, 2007, 111, 1815-1822.	2.6	46
179	Ultrasensitivein situTracing of the Alkaloid Dioncophylline A in the Tropical LianaTriphyophyllum peltatumby Applying Deep-UV Resonance Raman Microscopy. Analytical Chemistry, 2007, 79, 986-993.	6.5	46
180	Device for Raman Difference Spectroscopy. Analytical Chemistry, 2007, 79, 6159-6166.	6.5	41

#	Article	IF	CITATIONS
181	The Influence of Fluoroquinolone Drugs on the Bacterial Growth of S. epidermidis Utilizing the Unique Potential of Vibrational Spectroscopy. Journal of Physical Chemistry A, 2007, 111, 2898-2906.	2.5	42
182	<i>In Situ</i> Localization and Structural Analysis of the Malaria Pigment Hemozoin. Journal of Physical Chemistry B, 2007, 111, 11047-11056.	2.6	57
183	The First Photoexcitation Step of Ruthenium-Based Models for Artificial Photosynthesis Highlighted by Resonance Raman Spectroscopy. Journal of Physical Chemistry B, 2007, 111, 6078-6087.	2.6	57
184	In situUV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark. Journal of Physical Chemistry B, 2007, 111, 4171-4177.	2.6	50
185	Towards a Detailed Understanding of Bacterial Metabolismâ€"Spectroscopic Characterization of Staphylococcus Epidermidis. ChemPhysChem, 2007, 8, 124-137.	2.1	201
186	Excited-state dynamics of Ru(tbbpy)32+investigated by femtosecond time-resolved four-wave mixing. Laser Physics Letters, 2007, 4, 121-125.	1.4	13
187	Femtosecond time-resolved spectroscopy on biological photoreceptor chromophores. Laser and Photonics Reviews, 2007, 1, 57-78.	8.7	25
188	DNA tertiary structure and changes in DNA supercoiling upon interaction with ethidium bromide and gyrase monitored by UV resonance Raman spectroscopy. Journal of Raman Spectroscopy, 2007, 38, 1246-1258.	2. 5	15
189	Deepâ€UV surfaceâ€enhanced Raman scattering. Journal of Raman Spectroscopy, 2007, 38, 1379-1382.	2.5	122
190	UV Raman spectroscopyâ€"A technique for biological and mineralogical in situ planetary studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 68, 1029-1035.	3.9	70
191	Raman spectroscopic investigation of the antimalarial agent mefloquine. Analytical and Bioanalytical Chemistry, 2007, 387, 1749-1757.	3.7	41
192	Solvent Effects on the Excited-State Processes of Protochlorophyllide:Â A Femtosecond Time-Resolved Absorption Study. Journal of Physical Chemistry B, 2006, 110, 4399-4406.	2.6	47
193	Derivatives of dipyrido[3,2-a:2′,3′-c]phenazine and its ruthenium complexes, influence of arylic substitution on photophysical properties. Dalton Transactions, 2006, , 2225-2231.	3.3	39
194	Rapid identification of single microbes by various Raman spectroscopic techniques. , 2006, , .		1
195	Ultrafast Excited-State Excitation Dynamics in a Quasi-Two-Dimensional Light-Harvesting Antenna Based on Ruthenium(II) and Palladium(II) Chromophores. Chemistry - A European Journal, 2006, 12, 5105-5115.	3.3	57
196	Characterization of bacterial growth and the influence of antibiotics by means of UV resonance Raman spectroscopy. Biopolymers, 2006, 82, 306-311.	2.4	73
197	In vivo localization and identification of the antiplasmodial alkaloid dioncophylline A in the tropical lianaTriphyophyllum peltatum by a combination of fluorescence, near infrared Fourier transform Raman microscopy, and density functional theory calculations. Biopolymers, 2006, 82, 295-300.	2.4	45
198	Zinc Thiolate Complexes [ZnLn(SR)]+ with Azamacrocyclic Ligands, Part II: Mechanism of the Reaction with CS2. European Journal of Inorganic Chemistry, 2006, 2006, 2783-2791.	2.0	8

#	Article	IF	Citations
199	The Excited-State Chemistry of Protochlorophyllide a: A Time-Resolved Fluorescence Study. ChemPhysChem, 2006, 7, 1727-1733.	2.1	27
200	On the Way to Nanometer-Sized Information of the Bacterial Surface by Tip-Enhanced Raman Spectroscopy. ChemPhysChem, 2006, 7, 1428-1430.	2.1	174
201	Ground state vibrational wave-packet and recovery dynamics studied by time-resolved CARS and pump-CARS spectroscopy. Journal of Raman Spectroscopy, 2006, 37, 397-403.	2.5	22
202	Continuous-wave solid-state Raman laser for spectroscopic applications. Journal of Raman Spectroscopy, 2006, 37, 421-428.	2.5	15
203	The excited-state geometry of 1-hydroxy-2- acetonaphthone: a resonance Raman and quantum chemical study. Journal of Raman Spectroscopy, 2006, 37, 148-160.	2.5	20
204	Introduction of a high-pressure cell for use with Raman microscopy. Journal of Raman Spectroscopy, 2006, 37, 442-446.	2.5	4
205	FT-Raman and NIR-SERS characterization of the antimalarial drugs chloroquine and mefloquine and their interaction with hematin. Journal of Raman Spectroscopy, 2006, 37, 326-334.	2.5	31
206	Raman spectroscopy at the beginning of the twenty-first century. Journal of Raman Spectroscopy, 2006, 37, 20-28.	2.5	176
207	Effect of nanocrystal growth conditions on exciton decay and spin dephasing in an ensemble of CdSe nanocrystals grown in glass. Physical Review B, 2006, 73, .	3.2	11
208	Vibrational spectroscopic characterization of fluoroquinolones. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 1505-1517.	3.9	94
209	Adsorption of 6-mercaptopurine and 6-mercaptopurine riboside on silver colloid: a pH dependent surface enhanced Raman spectroscopy and density functional theory study. Part I. 6-Mercaptopurine. Journal of Molecular Structure, 2005, 735-736, 103-113.	3.6	38
210	Population dynamics of vibrational modes in stilbene-3 upon photoexcitation to the first excited state. Chemical Physics Letters, 2005, 408, 37-43.	2.6	21
211	The excited-state dynamics of magnesium octaethylporphyrin studied by femtosecond time-resolved four-wave-mixing. Chemical Physics Letters, 2005, 415, 94-99.	2.6	25
212	Femtosekundenlaser-Mikroskopie – Nichtlineare optische Phäomene revolutionieren Spektroskopie und Mikroskopie. Laser Technik Journal, 2005, 2, 67-71.	0.2	0
213	Adsorption of 6-mercaptopurine and 6-mercaptopurine-ribosideon silver colloid: A pH-dependent surface-enhanced Raman spectroscopy and density functional theory study. II. 6-mercaptopurine-riboside. Biopolymers, 2005, 78, 298-310.	2.4	19
214	Raman spectroscopic identification of single yeast cells. Journal of Raman Spectroscopy, 2005, 36, 377-379.	2.5	100
215	Chemotaxonomic Identification of Single Bacteria by Micro-Raman Spectroscopy: Application to Clean-Room-Relevant Biological Contaminations. Applied and Environmental Microbiology, 2005, 71, 1626-1637.	3.1	267
216	Ultrafast proton transfer of 1-hydroxy-2-acetonaphthone: Reaction path from resonance Raman and transient absorption studies. Journal of Chemical Physics, 2005, 122, 244315.	3.0	62

#	Article	IF	CITATIONS
217	Identification of Biotic and Abiotic Particles by Using a Combination of Optical Tweezers and In Situ Raman Spectroscopy. ChemPhysChem, 2004, 5, 1159-1170.	2.1	60
218	The Excited-State Dynamics of Phycocyanobilin in Dependence on the Excitation Wavelength. ChemPhysChem, 2004, 5, 1171-1177.	2.1	19
219	Remote Raman spectroscopy as a prospective tool for planetary surfaces. Journal of Raman Spectroscopy, 2004, 35, 433-440.	2.5	24
220	Raman spectroscopy breaking terrestrial barriers!. Journal of Raman Spectroscopy, 2004, 35, 429-432.	2.5	30
221	In vitro polarization-resolved resonance Raman studies of the interaction of hematin with the antimalarial drug chloroquine. Journal of Raman Spectroscopy, 2004, 35, 819-821.	2.5	45
222	Excited-state processes in protochlorophyllide a $\hat{a}\in$ a femtosecond time-resolved absorption study. Chemical Physics Letters, 2004, 397, 110-115.	2.6	31
223	Conformation and Hydrogen Bonding Properties of an Aziridinyl Peptide:Â X-ray Structure Analysis, Raman Spectroscopy and Theoretical Investigations. Journal of Physical Chemistry A, 2004, 108, 11398-11408.	2.5	12
224	How Delocalized Is N,N,Nâ€~,Nâ€~-Tetraphenylphenylenediamine Radical Cation? An Experimental and Theoretical Study on the Electronic and Molecular Structure. Journal of the American Chemical Society, 2004, 126, 7834-7845.	13.7	156
225	The application of a SERS fiber probe for the investigation of sensitive biological samples. Analyst, The, 2004, 129, 1193-1199.	3.5	80
226	Multimode pumped continuous-wave solid-state Raman laser. Optics Letters, 2004, 29, 2524.	3.3	83
227	Mechanism and Dynamics of Azobenzene Photoisomerization. Journal of the American Chemical Society, 2003, 125, 8098-8099.	13.7	296
228	Synthesis, structure and spectroscopic characterization of water-soluble CdS nanoparticles. Chemical Physics Letters, 2003, 379, 443-451.	2.6	57
229	Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes. Applied Physics B: Lasers and Optics, 2003, 77, 299-305.	2.2	43
230	Raman Spectroscopy-A Prospective Tool in the Life Sciences. ChemPhysChem, 2003, 4, 14-30.	2.1	302
231	Characterization of Diffusion Processes of Pharmacologically Relevant Molecules through Polydimethylsiloxane Membranes by Confocal Micro-resonance Raman Spectroscopy. ChemPhysChem, 2003, 4, 296-299.	2.1	18
232	Density functional and vibrational spectroscopic analysis of \hat{l}^2 -carotene. Journal of Raman Spectroscopy, 2003, 34, 413-419.	2.5	89
233	Raman spectroscopy of II-VI semiconductor nanostructures: CdS quantum dots. Journal of Raman Spectroscopy, 2003, 34, 100-103.	2.5	57
234	The identification of microorganisms by micro-Raman spectroscopy. Journal of Molecular Structure, 2003, 661-662, 363-369.	3.6	81

#	Article	IF	Citations
235	Synthesis and characterization of manganese-doped CdS nanoparticles. Physical Chemistry Chemical Physics, 2003, 5, 1639-1643.	2.8	43
236	Probing the Kinetics of a Nonadiabatic Transition Initiating Out of Vibrationally Excited as Well as Ground State Modes with Femtosecond Time-Resolved Transient Gratingsâ€. Journal of Physical Chemistry A, 2003, 107, 8355-8362.	2.5	23
237	Observation of Raman conversion for 70-fs pulses in KGd(WO_4)_2 crystal in the regime of impulsive stimulated Raman scattering. Optics Letters, 2003, 28, 926.	3.3	45
238	Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber. Optics Letters, 2003, 28, 1948.	3.3	111
239	Enhancement of photoluminescence in manganese-doped ZnS nanoparticles due to a silica shell. Journal of Chemical Physics, 2003, 118, 8945-8953.	3.0	78
240	Biexciton and spin dephasing effects in quantum dots embedded in a glass matrix proved by four-wave mixing and pump-and-probe spectroscopy. Physical Review B, 2003, 67, .	3.2	9
241	Low-wave-number Raman scattering fromCdSxSe1â^'xquantum dots embedded in a glass matrix. Physical Review B, 2003, 67, .	3.2	63
242	Degree of Asymmetry of CdSe Quantum Dots Grown in Glass Probed by Four Wave Mixing. Materials Research Society Symposia Proceedings, 2003, 789, 156.	0.1	0
243	Stable kilohertz rate molecular beam laser ablation sources. Review of Scientific Instruments, 2003, 74, 4812-4817.	1.3	20
244	Femtosecond coherent Raman spectroscopy. , 2002, , .		0
245	Substituent Effects in Molecular Electronic Relaxation Dynamics via Time-Resolved Photoelectron Spectroscopy:  Ï∈Ï€* States in Benzenes. Journal of Physical Chemistry A, 2002, 106, 8979-8991.	2.5	64
246	Population Dynamics in Vibrational Modes during Non-Bornâ^'Oppenheimer Processes:  CARS Spectroscopy Used as a Mode-Selective Filter. Journal of the American Chemical Society, 2002, 124, 6242-6243.	13.7	29
247	The role of specific normal modes during non-Born-Oppenheimer dynamics: the S1-S0 internal conversion of ?-carotene interrogated on a femtosecond time-scale with coherent anti-Stokes Raman scattering. Journal of Raman Spectroscopy, 2002, 33, 844-854.	2.5	42
248	Femtosecond coherent Raman spectroscopy and its application to porphyrins. Biopolymers, 2002, 67, 226-232.	2.4	13
249	Femtosecond time-resolved spectroscopy of elementary molecular dynamics. Die Naturwissenschaften, 2002, 89, 250-258.	1.6	20
250	Dynamics of excited-state proton transfer systems via time-resolved photoelectron spectroscopy. Journal of Chemical Physics, 2001, 114, 2519-2522.	3.0	147
251	Electronic continua in time-resolved photoelectron spectroscopy. II. Corresponding ionization correlations. Journal of Chemical Physics, 2001, 114, 1206-1213.	3.0	64
252	Separation of vibrational and rotational coherences with polarized femtosecond time-resolved four-wave mixing spectroscopy. Journal of Raman Spectroscopy, 2000, 31, 25-31.	2.5	25

#	Article	IF	Citations
253	Methods and applications of femtosecond time-resolved photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2000, 112, 183-198.	1.7	63
254	Wave packet dynamics in different electronic states investigated by femtosecond time-resolved four-wave-mixing spectroscopy. Applied Physics B: Lasers and Optics, 2000, 71, 299-317.	2.2	87
255	Towards disentangling coupled electronic–vibrational dynamics in ultrafast non-adiabatic processes. Faraday Discussions, 2000, 115, 33-48.	3.2	37
256	Determination of wave packet dynamics by femtosecond time-resolved pump-dump-probe and four-wave mixing techniques. Journal of Molecular Structure, 1999, 480-481, 33-43.	3.6	21
257	Femtosecond pump-probe and four-wave mixing spectroscopies applied to simple molecules. Vibrational Spectroscopy, 1999, 19, 23-31.	2.2	22
258	Simulation of femtosecond time-resolved four-wave mixing experiments on I2. Chemical Physics Letters, 1999, 301, 248-254.	2.6	32
259	CCD broadband detection technique for the spectral characterization of the inhomogeneous signal in femtosecond time-resolved four-wave mixing spectroscopy. Journal of Raman Spectroscopy, 1999, 30, 807-813.	2.5	18
260	Femtosecond Time-Resolved Dynamics of Geminate and Nongeminate Recombination:  lodine Enclosed in the Nanocavities of a Microporous SiO2 Modification. Journal of Physical Chemistry A, 1999, 103, 3854-3863.	2.5	31
261	Femtosecond spectroscopy on simple molecular systems: pump-probe and four-wave mixing techniques. , 1999, , .		1
262	Excitation of symmetric and anti-symmetric stretching motion in the continuum resonance Raman scattering from ABA-type molecules. Chemical Physics Letters, 1998, 284, 39-46.	2.6	19
263	Errratum to "A theoretical analysis of the time-resolved femtosecond CARS spectrum of I2― Chemical Physics Letters, 1998, 287, 753-754.	2.6	12
264	The Application of Femtosecond Time-Resolved Coherent Anti-Stokes Raman Scattering for the Investigation of Ground and Excited State Molecular Dynamics of Molecules in the Gas Phase. Journal of Physical Chemistry A, 1998, 102, 4059-4065.	2.5	108
265	Femtosecond Time-Resolved CARS Spectroscopy on Binary Gas-Phase Mixtures:  A Theoretical and Experimental Study of the Benzene/Toluene System. Journal of Physical Chemistry A, 1998, 102, 9734-9738.	2.5	29
266	Femtosecond Time-Resolved Pumpâ^'Probe Spectroscopy of NaI in Rare-Gas Environmentâ€. Journal of Physical Chemistry A, 1997, 101, 4852-4859.	2.5	26
267	Resonance Raman Scattering in Photodissociating Halomethanes. Journal of Raman Spectroscopy, 1997, 28, 445-453.	2.5	33
268	Femtosecond time-resolved coherent anti-Stokes Raman scattering for the simultaneous study of ultrafast ground and excited state dynamics: iodine vapour. Chemical Physics Letters, 1997, 270, 9-15.	2.6	145
269	Femtosecond time-resolved four-wave mixing spectroscopy in iodine vapour. Chemical Physics Letters, 1997, 280, 339-347.	2.6	75
270	A theoretical analysis of the time-resolved femtosecond CARS spectrum of I2. Chemical Physics Letters, 1997, 281, 332-336.	2.6	35

#	Article	IF	CITATIONS
271	Continuum resonance Raman scattering in 127179 Br1. Vibrational Spectroscopy, 1996, 12, 207-219.	2.2	1
272	Resonant Light Scattering: from Diatomic Molecules to Laser-Trapped Microparticles. Journal of the Brazilian Chemical Society, 1996, 7, 411-434.	0.6	3
273	UV-excited continuum resonance Raman scattering from 35Cl2. Journal of Raman Spectroscopy, 1995, 26, 861-866.	2.5	4
274	Continuum resonance Raman scattering in 127179Br and 35Cl2. Experimental verification of the reflection principle. Chemical Physics Letters, 1995, 243, 64-70.	2.6	6
275	Time evolution of resonance Raman scattering from simple systems. Journal of Molecular Structure, 1995, 347, 229-244.	3.6	8
276	New Methods for the Functionalization of Polymer Matrices with Thiomolybdate Clusters Applied for Hydrogen Evolution Reaction Catalysis. Advanced Energy and Sustainability Research, 0, , 2100085.	5.8	2
277	The combination of optical coherence tomography and Raman spectroscopy for tissue characterization. Journal of Biomedical Photonics and Engineering, 0, , 169-177.	0.7	8