Andreea R Schmitzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4218640/publications.pdf

Version: 2024-02-01

51 1,163 21 papers citations h-index

414303 32 g-index

55 55
all docs docs citations

55 times ranked 1481 citing authors

#	Article	IF	CITATIONS
1	Phenylethynylbenzyl-modified biguanides inhibit pancreatic cancer tumor growth. Scientific Reports, 2021, 11, 9854.	1.6	6
2	Highly Active, Entirely Biobased Antimicrobial Pickering Emulsions. ChemMedChem, 2021, 16, 2223-2230.	1.6	8
3	The chemistry of biguanides: from synthetic routes to applications in organic chemistry. Canadian Journal of Chemistry, 2020, 98, 251-260.	0.6	9
4	Benzimidazolium salts prevent and disrupt methicillin-resistant <i>Staphylococcus aureus</i> biofilms. RSC Advances, 2020, 10, 9420-9430.	1.7	8
5	Structural features influencing the activity of bis-biguanide ligands in the Suzuki–Miyaura cross-coupling reaction in neat water. Canadian Journal of Chemistry, 2020, 98, 547-553.	0.6	2
6	Phytochemical- and Cyclodextrin-Based Pickering Emulsions: Natural Potentiators of Antibacterial, Antifungal, and Antibiofilm Activity. Langmuir, 2020, 36, 4317-4323.	1.6	17
7	Membrane permeabilization and perturbation induced by alkyl- biguanidium salts. Supramolecular Chemistry, 2019, 31, 127-139.	1.5	1
8	Synthesis and Characterization of Biguanide and Biguanidium Surfactants for Efficient and Recyclable Application in the Suzuki–Miyaura Reaction. ACS Omega, 2018, 3, 1889-1896.	1.6	13
9	Antimicrobial and Antibiofilm Activity of Disubstituted Bisâ€benzimidazolium Salts. ChemMedChem, 2018, 13, 2567-2572.	1.6	16
10	Anti-staphylococcal biofilm activity of miconazoctylium bromide. Organic and Biomolecular Chemistry, 2018, 16, 4288-4294.	1.5	7
11	Metal–Organic Synthetic Transporters (MOST): Efficient Chloride and Antibiotic Transmembrane Transporters. Chemistry - A European Journal, 2017, 23, 6441-6451.	1.7	15
12	Metformin as a versatile ligand for recyclable palladium-catalyzed cross-coupling reactions in neat water. RSC Advances, 2017, 7, 21036-21044.	1.7	16
13	A field-deployed surface plasmon resonance (SPR) sensor for RDX quantification in environmental waters. Analyst, The, 2017, 142, 2161-2168.	1.7	25
14	Adaptation of a bacterial membrane permeabilization assay for quantitative evaluation of benzalkonium chloride as a membrane-disrupting agent. MedChemComm, 2017, 8, 1408-1413.	3.5	31
15	Imidazolium and benzimidazolium-containing compounds: from simple toxic salts to highly bioactive drugs. Organic and Biomolecular Chemistry, 2017, 15, 1051-1071.	1.5	43
16	Ultra-low fouling methylimidazolium modified surfaces for the detection of HER2 in breast cancer cell lysates. Analyst, The, 2017, 142, 2343-2353.	1.7	19
17	Highly Ordered Rectangular Columnar Ionic Liquid Crystals: A More Efficient Medium for Intramolecular Diels Alder Reactions. ChemistrySelect, 2016, 1, 2448-2453.	0.7	9
18	Transmembrane anion transport mediated by adamantyl-functionalised imidazolium salts. Supramolecular Chemistry, 2015, 27, 364-371.	1.5	26

#	Article	IF	Citations
19	Strong Antibacterial Properties of Anion Transporters: A Result of Depolarization and Weakening of the Bacterial Membrane. Journal of Medicinal Chemistry, 2015, 58, 2358-2366.	2.9	53
20	Intramolecular Diels Alder reactions in highly organized imidazolium salt-based ionic liquid crystals. RSC Advances, 2015, 5, 635-639.	1.7	21
21	The liquid crystal state: An intermediate state to obtain crystal packing. Journal of Molecular Liquids, 2014, 200, 283-288.	2.3	1
22	Biologically active binaphthol-scaffolded imidazolium salts. MedChemComm, 2014, 5, 436-440.	3.5	31
23	Support-Free Palladium–NHC Catalyst for Highly Recyclable Heterogeneous Suzuki–Miyaura Coupling in Neat Water. Organometallics, 2014, 33, 6544-6549.	1.1	45
24	2,4,7-Triphenylbenzimidazole: the monomeric unit of supramolecular helical rod-like transmembrane transporters. RSC Advances, 2014, 4, 42293-42298.	1.7	15
25	Imidazolium-functionalized \hat{l}^2 -cyclodextrin as a highly recyclable multifunctional ligand in water. Green Chemistry, 2014, 16, 3117-3124.	4.6	32
26	Thermophysical Properties of Imidazolium-Functionalized Binols and Their Application in Asymmetric Catalysis. Organometallics, 2014, 33, 3328-3340.	1.1	8
27	Benzimidazolium-based synthetic chloride and calcium transporters in bacterial membranes. Organic and Biomolecular Chemistry, 2013, 11, 923-928.	1.5	47
28	Imidazolium-Based Ionic Liquid Surfaces for Biosensing. Analytical Chemistry, 2013, 85, 5770-5777.	3.2	36
29	Mesomorphic and ion conducting properties of dialkyl(1,4-phenylene)diimidazolium salts. Soft Matter, 2012, 8, 10914.	1.2	24
30	Asymmetric Michael Addition Induced by the Anion of an Imidazolium Salt. European Journal of Organic Chemistry, 2012, 2012, 6280-6284.	1.2	18
31	An anion structure–activity relationship of imidazolium-based synthetic transporters. MedChemComm, 2012, 3, 1231.	3.5	22
32	Asymmetric Aldol Reaction Catalyzed by the Anion of an Ionic Liquid. Journal of Organic Chemistry, 2012, 77, 4917-4923.	1.7	47
33	Phase transitions of an ionic liquid self-assembled monolayer on Au. Physical Chemistry Chemical Physics, 2011, 13, 12015.	1.3	8
34	Influence of the Flexibility of the Diimidazolium Cations on Their Organization into Crystalline Materials. Crystal Growth and Design, 2011, 11, 3828-3836.	1.4	14
35	Uncovering new properties of imidazolium salts: Clâ^'transport and supramolecular regulation of their transmembrane activity. Chemical Communications, 2011, 47, 1788-1790.	2.2	36
36	Introduction of axial chirality in a planar aromatic ligand results in chiral recognition with DNA. Journal of Molecular Recognition, 2011, 24, 288-294.	1.1	15

#	Article	IF	Citations
37	Imidazolium Cations in Organic Chemistry: From Chemzymes to Supramolecular Building Blocs. Current Organic Chemistry, 2010, 14, 1500-1516.	0.9	28
38	<i>N</i> , <i>N′</i> â€Methylenediimidazolium Salts: From Selfâ€Assembly to an Efficient DNAse Protection System. Chemistry - A European Journal, 2010, 16, 4686-4692.	1.7	20
39	Highly Recyclable Chemoâ€∤Biocatalyzed Cascade Reactions with Ionic Liquids: Oneâ€Pot Synthesis of Chiral Biaryl Alcohols. Chemistry - A European Journal, 2010, 16, 6748-6751.	1.7	79
40	Assembly of Tunable Supramolecular Organometallic Catalysts with Cyclodextrins. Organometallics, 2010, 29, 3442-3449.	1.1	17
41	Thermoregulated Microemulsions by Cyclodextrin Sequestration: A New Approach to Efficient Catalyst Recovery. Chemistry - A European Journal, 2009, 15, 6327-6331.	1.7	36
42	Supramolecular encapsulation of 1,3â€bis(1â€adamantyl)imidazolium chloride by βâ€cyclodextrins: towards inhibition of C(2)â€H/D exchange. Journal of Physical Organic Chemistry, 2009, 22, 91-95.	0.9	15
43	1,3-Dibenzylimidazolium salts: A paradigm of water and anion effect on the supramolecular H-bonds network. Journal of Molecular Structure, 2009, 918, 101-107.	1.8	19
44	Development of <i>N,N′</i> -Diaromatic Diimidazolium Cations: Arene Interactions for Highly Organized Crystalline Materials. Crystal Growth and Design, 2009, 9, 4784-4792.	1.4	29
45	Formation of Inclusion Complexes between $1,1\hat{a}\in^2$ -Dialkyl-3,3 $\hat{a}\in^2$ -(1,4-phenylene)bisimidazolium Dibromide Salts and Cucurbit[7]uril. Journal of Physical Chemistry B, 2009, 113, 16159-16168.	1.2	15
46	Recognition of 1,4-Xylylene Binding Sites in Polyimidazolium Cations by Cucurbit[7]uril: Toward Pseudorotaxane Assembly. Journal of Physical Chemistry B, 2009, 113, 9493-9498.	1.2	22
47	Supramolecular effects involving the incorporation of guest substrates in imidazolium ionic liquid networks: Recent advances and future developments. Supramolecular Chemistry, 2009, 21, 245-263.	1.5	59
48	N,N $\hat{E}\frac{1}{4}$ -Disubstituted Methylenediimidazolium Salts: A Versatile Guest for Various Macrocycles. Journal of Organic Chemistry, 2008, 73, 3784-3790.	1.7	45
49	Multiple Equilibria in the Complexation of Dibenzylimidazolium Bromide Salts by Cyclodextrins: Toward Controlled Self-Assembly. Journal of Physical Chemistry B, 2008, 112, 11064-11070.	1.2	16
50	Dibenzylimidazolium Halides: From Complex Molecular Network in Solid State to Simple Dimer in Solution and in Gas Phase. Journal of Physical Chemistry A, 2008, 112, 4996-5001.	1.1	19
51	From the Past to the Future of Rotaxanes. , 0, , 129-159.		0