
Alejo Efeyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4218525/publications.pdf Version: 2024-02-01

Δι είο Εξένλη

#	Article	IF	CITATIONS
1	A YAP/TAZ-TEAD signalling module links endothelial nutrient acquisition to angiogenic growth. Nature Metabolism, 2022, 4, 672-682.	11.9	20
2	Harnessing DNA for nanothermometry. Journal of Biophotonics, 2021, 14, e202000341.	2.3	2
3	Limited survival and impaired hepatic fasting metabolism in mice with constitutive Rag GTPase signaling. Nature Communications, 2021, 12, 3660.	12.8	13
4	Inhibition of Rag GTPase signaling in mice suppresses B cell responses and lymphomagenesis with minimal detrimental trade-offs. Cell Reports, 2021, 36, 109372.	6.4	6
5	The mTOR–Autophagy Axis and the Control of Metabolism. Frontiers in Cell and Developmental Biology, 2021, 9, 655731.	3.7	119
6	From mouse genetics to targeting the Rag GTPase pathway. Molecular and Cellular Oncology, 2021, 8, 1979370.	0.7	0
7	Cyclin D3 drives inertial cell cycling in dark zone germinal center B cells. Journal of Experimental Medicine, 2021, 218, .	8.5	29
8	Protocol for the assessment of mTOR activity in mouse primary hepatocytes. STAR Protocols, 2021, 2, 100918.	1.2	2
9	Nutrient mTORC1 signaling underpins regulatory T cell control of immune tolerance. Journal of Experimental Medicine, 2020, 217, .	8.5	24
10	Oncogenic Rag GTPase signalling enhances B cell activation and drives follicular lymphoma sensitive to pharmacological inhibition of mTOR. Nature Metabolism, 2019, 1, 775-789.	11.9	40
11	Universal guidelines for the conversion of proteins and dyes into functional nanothermometers. Journal of Biophotonics, 2019, 12, e201900044.	2.3	5
12	Germinal Center Selection and Affinity Maturation Require Dynamic Regulation of mTORC1 Kinase. Immunity, 2017, 46, 1045-1058.e6.	14.3	232
13	mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer. Nature, 2017, 547, 109-113.	27.8	142
14	Amino acid–insensitive mTORC1 regulation enables nutritional stress resilience in hematopoietic stem cells. Journal of Clinical Investigation, 2017, 127, 1405-1413.	8.2	23
15	Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma. Nature Genetics, 2016, 48, 183-188.	21.4	160
16	Nutrient-sensing mechanisms and pathways. Nature, 2015, 517, 302-310.	27.8	860
17	RagA, but Not RagB, Is Essential for Embryonic Development and Adult Mice. Developmental Cell, 2014, 29, 321-329.	7.0	81
18	Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature, 2013, 493, 679-683.	27.8	374

Alejo Efeyan

#	Article	IF	CITATIONS
19	Nutrients and growth factors in mTORC1 activation. Biochemical Society Transactions, 2013, 41, 902-905.	3.4	46
20	Amino acids and mTORC1: from lysosomes to disease. Trends in Molecular Medicine, 2012, 18, 524-533.	6.7	370
21	Pten Positively Regulates Brown Adipose Function, Energy Expenditure, and Longevity. Cell Metabolism, 2012, 15, 382-394.	16.2	308
22	DEPTOR Cell-Autonomously Promotes Adipogenesis, and Its Expression Is Associated with Obesity. Cell Metabolism, 2012, 16, 202-212.	16.2	99
23	mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H ⁺ -ATPase. Science, 2011, 334, 678-683.	12.6	1,369
24	mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Reviews Molecular Cell Biology, 2011, 12, 21-35.	37.0	3,464
25	A minimally invasive assay for individual assessment of the ATM/CHEK2/p53 pathway activity. Cell Cycle, 2011, 10, 1152-1161.	2.6	36
26	mTOR and cancer: many loops in one pathway. Current Opinion in Cell Biology, 2010, 22, 169-176.	5.4	375
27	Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression. PLoS ONE, 2009, 4, e5475.	2.5	50
28	p53: Guardian of the Genome and Policeman of the Oncogenes. Cell Cycle, 2007, 6, 1006-1010.	2.6	440
29	Induction of p53-Dependent Senescence by the MDM2 Antagonist Nutlin-3a in Mouse Cells of Fibroblast Origin. Cancer Research, 2007, 67, 7350-7357.	0.9	116
30	Policing of oncogene activity by p53. Nature, 2006, 443, 159-159.	27.8	107
31	A High-Throughput Loss-of-Function Screening Identifies Novel p53 Regulators. Cell Cycle, 2006, 5, 1880-1885.	2.6	52
32	Senescence in premalignant tumours. Nature, 2005, 436, 642-642.	27.8	1,280
33	Isolation of a stromal cell line from an early passage of a mouse mammary tumor line: A model for stromal parenchymal interactions. Journal of Cellular Physiology, 2005, 202, 672-682.	4.1	6
34	Increased gene dosage of Ink4a/Arf results in cancer resistance and normal aging. Genes and Development, 2004, 18, 2736-2746.	5.9	123
35	Establishment of Two Hormone-responsive Mouse Mammary Carcinoma Cell Lines Derived from a Metastatic Mammary Tumor. Breast Cancer Research and Treatment, 2004, 83, 233-244.	2.5	10
36	p21, p27 and p53 in estrogen and antiprogestin-induced tumor regression of experimental mouse mammary ductal carcinomas. Carcinogenesis, 2002, 23, 749-758.	2.8	34