Christopher K Ober

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4217872/christopher-k-ober-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25,996 76 512 147 h-index g-index citations papers 6.84 27,632 6.7 593 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
512	New Approaches to EUV Photoresists: Studies of Polyacetals and Polypeptoids to Expand the Photopolymer Toolbox. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2021 , 34, 71-74	0.7	3
511	Polymer-Grafted Nanoparticles (PGNs) with Adjustable Graft-Density and Interparticle Hydrogen Bonding Interaction. <i>Macromolecular Rapid Communications</i> , 2021 , e2100629	4.8	1
510	High-Resolution Nanopatterning of Free-Standing, Self-Supported Helical Polypeptide Rod Brushes via Electron Beam Lithography <i>ACS Macro Letters</i> , 2021 , 10, 755-759	6.6	O
509	Amphiphilic Nitroxide-Bearing Siloxane-Based Block Copolymer Coatings for Enhanced Marine Fouling Release. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 28790-28801	9.5	2
508	Using Liquid Crystals to Probe the Organization of Helical Polypeptide Brushes Induced by Solvent Pretreatment. <i>Macromolecules</i> , 2021 , 54, 7786-7795	5.5	1
507	Materials systems for 2-photon lithography 2020 , 143-174		1
506	Thermal Stability of Econjugated n-Ethylene-Glycol-Terminated Quaterthiophene Oligomers: A Computational and Experimental Study. <i>ACS Macro Letters</i> , 2020 , 9, 295-300	6.6	2
505	Terminology of polymers in advanced lithography (IUPAC Recommendations 2020). <i>Pure and Applied Chemistry</i> , 2020 , 92, 1861-1891	2.1	0
504	Silica-PMMA hairy nanoparticles prepared via phase transfer-assisted aqueous miniemulsion atom transfer radical polymerization. <i>Journal of Polymer Science</i> , 2020 , 58, 2310-2316	2.4	2
503	Quantifying internal charge transfer and mixed ion-electron transfer in conjugated radical polymers. <i>Chemical Science</i> , 2020 , 11, 9962-9970	9.4	7
502	Three-Dimensional Printing of Hierarchical Porous Architectures. <i>Chemistry of Materials</i> , 2019 , 31, 1001	79:16002	22 ₁₁
501	Aqueous one-pot synthesis of epoxy-functional diblock copolymer worms from a single monomer: new anisotropic scaffolds for potential charge storage applications. <i>Polymer Chemistry</i> , 2019 , 10, 194-2	o o .9	26
500	The Role of Hydrogen Bonding in Peptoid-Based Marine Antifouling Coatings. <i>Macromolecules</i> , 2019 , 52, 1287-1295	5.5	30
499	Structure Control of a Econjugated Oligothiophene-Based Liquid Crystal for Enhanced Mixed Ion/Electron Transport Characteristics. <i>ACS Nano</i> , 2019 , 13, 7665-7675	16.7	17
498	Polymer-Based Marine Antifouling and Fouling Release Surfaces: Strategies for Synthesis and Modification. <i>Annual Review of Chemical and Biomolecular Engineering</i> , 2019 , 10, 241-264	8.9	59
497	Polymer Brushes: Polymer Brushes on Hexagonal Boron Nitride (Small 19/2019). Small, 2019 , 15, 19700)9 <u>0</u> 1	1
496	Entropic death of nonpatterned and nanopatterned polyelectrolyte brushes. <i>Journal of Polymer Science Part A</i> , 2019 , 57, 1283-1295	2.5	5

(2018-2019)

495	Spatially Controlled Transience of Graphene-Polymer Electronics with Silicon Singulation. <i>Advanced Functional Materials</i> , 2019 , 29, 1900592	15.6	1	
494	Polymer Brushes on Hexagonal Boron Nitride. <i>Small</i> , 2019 , 15, e1805228	11	12	
493	Block copolymers containing stable radical and fluorinated blocks with long-range ordered morphologies prepared by anionic polymerization. <i>Polymer Chemistry</i> , 2019 , 10, 5094-5102	4.9	7	
492	Chemical reaction and diffusion kinetics during laser-induced submillisecond heating for lithographic applications. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2019 , 37, 041601	1.3	Ο	
491	Radical sensitive Zinc-based nanoparticle EUV photoresists 2019 ,		1	
490	Metal Organic Cluster Photoresists for EUV Lithography. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2019 , 32, 711-714	0.7	1	
489	Stability and microbial toxicity of HfO2 and ZrO2 nanoparticles for photolithography. <i>Green Materials</i> , 2019 , 7, 109-117	3.2	О	
488	Self-Assembly Behavior of an Oligothiophene-Based Conjugated Liquid Crystal and Its Implication for Ionic Conductivity Characteristics. <i>Advanced Functional Materials</i> , 2019 , 29, 1805220	15.6	15	
487	Flexible Hydrophobic Antifouling Coating with Oriented Nanotopography and Nonleaking Capsaicin. <i>ACS Applied Materials & Capsaicin. ACS Applied Materials & </i>	9.5	32	
486	Mini Monomer Encapsulated Emulsion Polymerization of PMMA Using Aqueous ARGET ATRP. <i>ACS Macro Letters</i> , 2018 , 7, 459-463	6.6	17	
485	In pursuit of Moored Law: polymer chemistry in action. <i>Polymer Journal</i> , 2018 , 50, 45-55	2.7	10	
482	Biologically Complex Planar Cell Plasma Membranes Supported on Polyelectrolyte Cushions Enhance Transmembrane Protein Mobility and Retain Native Orientation. <i>Langmuir</i> , 2018 , 34, 1061-10	72 ⁴	25	
483	Charge Transport in Conjugated Polymers with Pendent Stable Radical Groups. <i>Chemistry of Materials</i> , 2018 , 30, 4799-4807	9.6	21	
482	Electroluminescence from Solution-Processed Pinhole-Free Nanometer-Thickness Layers of Conjugated Polymers. <i>Nano Letters</i> , 2018 , 18, 5382-5388	11.5	2	
481	UV-Triggered Transient Electrospun Poly(propylene carbonate)/Poly(phthalaldehyde) Polymer Blend Fiber Mats. <i>ACS Applied Materials & Electrospun Poly(propylene carbonate)</i> 1 Blend Fiber Mats. <i>ACS Applied Materials & Discourse (Poly(phthalaldehyde))</i> 1 Blend Fiber Mats. <i>ACS Applied Materials & Discourse (Poly(propylene carbonate))</i> 1 Blend Fiber Mats. <i>ACS Applied Materials & Discourse (Poly(propylene carbonate))</i> 1 Blend Fiber Mats. <i>ACS Applied Materials & Discourse (Poly(propylene carbonate))</i> 1 Blend Fiber Mats. <i>ACS Applied Materials & Discourse (Poly(propylene carbonate))</i> 1 Blend Fiber Mats. <i>ACS Applied Materials & Discourse (Poly(propylene carbonate))</i> 1 Blend Fiber Mats. <i>ACS Applied Materials & Discourse (Poly(propylene carbonate))</i> 1 Blend Fiber Mats. <i>ACS Applied Materials & Discourse (Poly(propylene carbonate))</i> 2 Blend Fiber Mats. <i>ACS Applied Materials & Discourse (Poly(propylene carbonate))</i> 3 Blend Fiber Mats. <i>ACS Applied Materials & Discourse (Poly(propylene carbonate))</i> 3 Blend Fiber Mats. <i>ACS Applied Materials & Discourse (Poly(propylene carbonate))</i> 3 Blend Fiber Mats. <i>ACS Applied Materials (Poly(propylene carbonate))</i> 3 Blend Fiber Mats. <i>ACS Applied Materials (Poly(propylene carbonate))</i> 3 Blend Fiber Mats. <i>ACS Applied Materials (Poly(propylene carbonate))</i> 3 Blend Fiber Mats. <i>ACS Applied Materials (Poly(propylene carbonate))</i> 4 Blend Fiber Mats. <i>ACS Applied Materials (Poly(propylene carbonate))</i> 4 Blend Fiber Mats. <i>ACS Applied Materials (Poly(propylene carbonate))</i> 4 Blend Fiber Mats. <i>ACS Applied (Poly(propylene carbonate))</i> 4 Blend Fiber Mats. <i>ACS Applied (Poly(propylene carbonate))</i> 4 Blend Fiber Mats. <i>ACS Applied (Poly(propylene carbonate))</i> 5 Blend Fiber Mats. <i>ACS Ap</i>	9.5	4	
480	Engineered nanomaterials and human health: Part 1. Preparation, functionalization and characterization (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2018 , 90, 1283-1324	2.1	27	
479	Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2018 , 90, 1325-1356	2.1	17	
47 ⁸	Metal D rganic Framework-Inspired Metal-Containing Clusters for High-Resolution Patterning. Chemistry of Materials, 2018 , 30, 4124-4133	9.6	29	

477	EUV photolithography: resist progress in metalBrganic complex photoresists. <i>Journal of Micro/Nanolithography, MEMS, and MOEMS</i> , 2018 , 18, 1	0.7	11
476	Patterning mechanism of metal based hybrid EUV resists 2018,		1
475	EUV photolithography: resist progress and challenges 2018,		4
474	EUV metal oxide hybrid photoresists: ultra-small structures for high-resolution patterning 2018 ,		1
473	Impact of the Synthesis Method on the Solid-State Charge Transport of Radical Polymers. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 111-118	7.1	33
472	Facile Preparation of Epoxide-Functionalized Surfaces via Photocurable Copolymer Coatings and Subsequent Immobilization of Iminodiacetic Acids. <i>ACS Applied Materials & Discourage Subsequent Acids</i> , 10, 40	89° 5 -40	18 79
471	Progress in metal organic cluster EUV photoresists. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2018 , 36, 06J504	1.3	3
470	Materials Overview for 2-Photon 3D Printing Applications. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2018 , 31, 425-429	0.7	2
469	The Challenges of Highly Sensitive EUV Photoresists. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2018 , 31, 261-265	0.7	5
468	Synthesis, Processing, and Characterization of Helical Polypeptide Rod C oil Mixed Brushes. <i>ACS Macro Letters</i> , 2018 , 7, 1186-1191	6.6	7
467	Fifty years of the Baier curve: progress in understanding antifouling coatings. <i>Green Materials</i> , 2017 , 5, 1-3	3.2	13
466	Model Amphiphilic Block Copolymers with Tailored Molecular Weight and Composition in PDMS-Based Films to Limit Soft Biofouling. <i>ACS Applied Materials & Discourt Amplied Materials & Discourt Amplied Materials & Discourt Materials & Discourt</i>	l <i>8</i> ∙5	24
465	50th Anniversary Perspective: Polymer Brushes: Novel Surfaces for Future Materials. <i>Macromolecules</i> , 2017 , 50, 4089-4113	5.5	265
464	Transient Fiber Mats of Electrospun Poly(Propylene Carbonate) Composites with Remarkable Mechanical Strength. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 25495-25505	9.5	10
463	Morphology of Nanostructured Polymer Brushes Dependent on Production and Treatment. <i>Macromolecules</i> , 2017 , 50, 4715-4724	5.5	6
462	Ultrafast Self-Assembly of Sub-10 nm Block Copolymer Nanostructures by Solvent-Free High-Temperature Laser Annealing. <i>ACS Applied Materials & Distriction of Sub-10 nm Block Copolymer Nanostructures by Solvent-Free High-Temperature Laser Annealing. ACS Applied Materials & Distriction of Sub-10 nm Block Copolymer Nanostructures by Solvent-Free High-Temperature Laser Annealing. <i>ACS Applied Materials & Distriction of Sub-10 nm Block Copolymer Nanostructures by Solvent-Free High-Temperature Laser Annealing. ACS Applied Materials & Distriction of Sub-10 nm Block Copolymer Nanostructures by Solvent-Free High-Temperature Laser Annealing. <i>ACS Applied Materials & Distriction of Sub-10 nm Block Copolymer Nanostructures by Solvent-Free Nanostructures and Sub-10 nm Block Copolymer Nanostructures by Solvent-Free Nanostructures and Sub-10 nm Block Copolymer Nanostructures by Solvent-Free Nanostructures and Sub-10 nm Block Copolymer Nanostructures by Solvent-Free Nanostructures and Sub-10 nm Block Copolymer N</i></i></i>	9.5	29
461	Role of Backbone Chemistry and Monomer Sequence in Amphiphilic Oligopeptide- and Oligopeptoid-Functionalized PDMS- and PEO-Based Block Copolymers for Marine Antifouling and Fouling Release Coatings. <i>Macromolecules</i> , 2017 , 50, 2656-2667	5.5	44
460	Directed self-assembly: A dress code for block copolymers. <i>Nature Nanotechnology</i> , 2017 , 12, 507-508	28.7	6

459	Nanoparticle photoresist studies for EUV lithography 2017,		12
458	Perpendicular Orientation Control without Interfacial Treatment of RAFT-Synthesized High-IBlock Copolymer Thin Films with Sub-10 nm Features Prepared via Thermal Annealing. <i>ACS Applied Materials & </i>	9.5	47
457	Reduced Lateral Confinement and Its Effect on Stability in Patterned Strong Polyelectrolyte Brushes. <i>Langmuir</i> , 2017 , 33, 3296-3303	4	10
456	Oligopeptide-modified hydrophobic and hydrophilic polymers as antifouling coatings. <i>Green Materials</i> , 2017 , 5, 31-43	3.2	6
455	Recent Progress in EUV Metal Oxide Photoresists. <i>Journal of Photopolymer Science and Technology</i> = [Fotoporima Konwakai Shi], 2017 , 30, 93-97	0.7	4
454	Manipulation of cell adhesion and dynamics using RGD functionalized polymers. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 6307-6316	7-3	26
453	Correction: Manipulation of cell adhesion and dynamics using RGD functionalized polymers. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 6973	7.3	1
452	Lithography performance and environmental compatibility of PFOS-free photoacid generators. <i>Green Materials</i> , 2017 , 5, 173-181	3.2	2
45 ¹	MEMS analogous micro-patterning of thermotropic nematic liquid crystalline elastomer films using a fluorinated photoresist and a hard mask process. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 12635-126	54 ⁷ 4 ⁻¹	13
450	Extreme ultraviolet resist materials for sub-7 nm patterning. Chemical Society Reviews, 2017, 46, 4855-	48 ,6 65	124
450	Extreme ultraviolet resist materials for sub-7 nm patterning. <i>Chemical Society Reviews</i> , 2017 , 46, 4855- Elucidating the patterning mechanism of zirconium-based hybrid photoresists. <i>Journal of Micro/Nanolithography, MEMS, and MOEMS</i> , 2017 , 16, 1	48 6 65 0.7	124
	Elucidating the patterning mechanism of zirconium-based hybrid photoresists. <i>Journal of Micro/</i>		
449	Elucidating the patterning mechanism of zirconium-based hybrid photoresists. <i>Journal of Micro/Nanolithography, MEMS, and MOEMS</i> , 2017 , 16, 1 Kinetics of Block Copolymer Phase Segregation during Sub-millisecond Transient Thermal	0.7	12
449	Elucidating the patterning mechanism of zirconium-based hybrid photoresists. <i>Journal of Micro/Nanolithography, MEMS, and MOEMS</i> , 2017 , 16, 1 Kinetics of Block Copolymer Phase Segregation during Sub-millisecond Transient Thermal Annealing. <i>Macromolecules</i> , 2016 , 49, 6462-6470 Effects of surface-active block copolymers with oxyethylene and fluoroalkyl side chains on the	o.7 5.5	12
449 448 447	Elucidating the patterning mechanism of zirconium-based hybrid photoresists. <i>Journal of Micro/Nanolithography, MEMS, and MOEMS</i> , 2017 , 16, 1 Kinetics of Block Copolymer Phase Segregation during Sub-millisecond Transient Thermal Annealing. <i>Macromolecules</i> , 2016 , 49, 6462-6470 Effects of surface-active block copolymers with oxyethylene and fluoroalkyl side chains on the antifouling performance of silicone-based films. <i>Biofouling</i> , 2016 , 32, 81-93 Interface manipulated two-phase nanostructure in a triblock terpolymer with a short middle	0.75.53.3	12 19 37
449 448 447 446	Elucidating the patterning mechanism of zirconium-based hybrid photoresists. <i>Journal of Micro/Nanolithography, MEMS, and MOEMS</i> , 2017 , 16, 1 Kinetics of Block Copolymer Phase Segregation during Sub-millisecond Transient Thermal Annealing. <i>Macromolecules</i> , 2016 , 49, 6462-6470 Effects of surface-active block copolymers with oxyethylene and fluoroalkyl side chains on the antifouling performance of silicone-based films. <i>Biofouling</i> , 2016 , 32, 81-93 Interface manipulated two-phase nanostructure in a triblock terpolymer with a short middle segment. <i>Polymer Journal</i> , 2016 , 48, 533-538	0.75.53.3	12 19 37 3
449 448 447 446 445	Elucidating the patterning mechanism of zirconium-based hybrid photoresists. <i>Journal of Micro/Nanolithography, MEMS, and MOEMS</i> , 2017 , 16, 1 Kinetics of Block Copolymer Phase Segregation during Sub-millisecond Transient Thermal Annealing. <i>Macromolecules</i> , 2016 , 49, 6462-6470 Effects of surface-active block copolymers with oxyethylene and fluoroalkyl side chains on the antifouling performance of silicone-based films. <i>Biofouling</i> , 2016 , 32, 81-93 Interface manipulated two-phase nanostructure in a triblock terpolymer with a short middle segment. <i>Polymer Journal</i> , 2016 , 48, 533-538 Transient micropackets for silicon dioxide and polymer-based vaporizable electronics 2016 , Solubility studies of inorganic-organic hybrid nanoparticle photoresists with different surface	0.75.53.32.7	12 19 37 3

441	Ambiguous anti-fouling surfaces: Facile synthesis by light-mediated radical polymerization. <i>Journal of Polymer Science Part A</i> , 2016 , 54, 253-262	2.5	44
440	Positive Tone Nanoparticle Photoresists: New Insight on the Patterning Mechanism. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2016 , 29, 509-512	0.7	6
439	Precise Synthesis of Fluorine-containing Block Copolymers via RAFT. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2016 , 29, 705-708	0.7	6
438	Micrometer-Scale Ordering of Silicon-Containing Block Copolymer Thin Films via High-Temperature Thermal Treatments. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2016 , 8, 9897-908	9.5	16
437	Recent progress in nanoparticle photoresists development for EUV lithography 2016,		7
436	Positive tone oxide nanoparticle EUV (ONE) photoresists 2016 ,		4
435	Transient materials from thermally-sensitive polycarbonates and polycarbonate nanocomposites. <i>Polymer</i> , 2016 , 101, 59-66	3.9	13
434	Nanopatterning of Stable Radical Containing Block Copolymers for Highly Ordered Functional Nanomeshes. <i>Macromolecules</i> , 2016 , 49, 5884-5892	5.5	11
433	Nomenclature and graphic representations for chemically modified polymers (IUPAC Recommendations 2014). <i>Pure and Applied Chemistry</i> , 2015 , 87, 307-319	2.1	3
432	Zinc induced polyelectrolyte coacervate bioadhesive and its transition to a self-healing hydrogel. <i>RSC Advances</i> , 2015 , 5, 66871-66878	3.7	62
431	Studying the Mechanism of Hybrid Nanoparticle Photoresists: Effect of Particle Size on Photopatterning. <i>Chemistry of Materials</i> , 2015 , 27, 5027-5031	9.6	51
430	Systematic study of ligand structures of metal oxide EUV nanoparticle photoresists 2015,		1
429	New developments in ligand-stabilized metal oxide nanoparticle photoresists for EUV lithography 2015 ,		1
428	Design, Synthesis, and Use of Y-Shaped ATRP/NMP Surface Tethered Initiator. <i>ACS Macro Letters</i> , 2015 , 4, 606-610	6.6	14
427	Widely Tunable Morphologies in Block Copolymer Thin Films Through Solvent Vapor Annealing Using Mixtures of Selective Solvents. <i>Advanced Functional Materials</i> , 2015 , 25, 3057-3065	15.6	70
426	Photopatterning of Indomethacin Thin Films: a Solvent-Free Vapor-Deposited Photoresist. <i>ACS Applied Materials & Description of Science (Note: App</i>	9.5	2
425	Block Copolymers as Antifouling and Fouling Resistant Coatings 2015 , 881-924		1
424	Understanding of PS-b-PMMA phase segregation under laser-induced millisecond thermal annealing 2015 ,		4

423	Control of polystyrene-block-poly(methyl methacrylate) directed self-assembly by laser-induced millisecond thermal annealing. <i>Journal of Micro/ Nanolithography, MEMS, and MOEMS</i> , 2015 , 14, 031205	o.7	9
422	Supercritical CO2-philic nanoparticles suitable for determining the viability of carbon sequestration in shale. <i>Environmental Science: Nano</i> , 2015 , 2, 288-296	7.1	4
421	A glucose sensor via stable immobilization of the GOx enzyme on an organic transistor using a polymer brush. <i>Journal of Polymer Science Part A</i> , 2015 , 53, 372-377	2.5	50
420	Block copolymers with stable radical and fluorinated groups by ATRP. <i>MRS Communications</i> , 2015 , 5, 441-446	2.7	6
419	Laser Spike Annealing of DSA Photoresists. <i>Journal of Photopolymer Science and Technology =</i> [Fotoporima Konwakai Shi], 2015 , 28, 631-634	0.7	8
418	Oxide Nanoparticle EUV (ONE) Photoresists: Current Understanding of the Unusual Patterning Mechanism. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2015 , 28, 515	5-578	15
417	Vertical Oriented Lamellar Formation of Fluorine- and Silicon-containing Block Copolymers without Neutral Layers. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2015 , 28, 649-652	0.7	9
416	Amphiphilic oligopeptides grafted to PDMS-based diblock copolymers for use in antifouling and fouling release coatings. <i>Polymers for Advanced Technologies</i> , 2015 , 26, 829-836	3.2	23
415	Alkali Metal Based Micro Combustion Using Graphene Micro-valve Trigger. <i>Journal of Physics: Conference Series</i> , 2015 , 660, 012033	0.3	2
414	Amphiphilic triblock copolymers with PEGylated hydrocarbon structures as environmentally friendly marine antifouling and fouling-release coatings. <i>Biofouling</i> , 2014 , 30, 589-604	3.3	57
413	Thermally induced orientational flipping of cylindrical phase diblock copolymers. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 2175-2182	7.1	18
412	Controlled roughness reduction of patterned resist polymers using laser-induced sub-millisecond heating. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9115-9121	7.1	4
411	Phase behaviour of PMMA-b-PHEMA with solvents methanol and THF: modelling and comparison to the experiment. <i>Soft Matter</i> , 2014 , 10, 6172-81	3.6	4
410	Generalized platform for antibody detection using the antibody catalyzed water oxidation pathway. <i>Journal of the American Chemical Society</i> , 2014 , 136, 1879-83	16.4	27
409	Photolithographic Patterning of Organic Electronic Materials 2014 , 399-420		
408	C60-containing polymers for electron beam lithography. <i>Polymer Bulletin</i> , 2014 , 71, 2395-2405	2.4	6
407	Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 1724-1732	7.3	135
406	Laser-induced sub-millisecond heating reveals distinct tertiary ester cleavage reaction pathways in a photolithographic resist polymer. <i>ACS Nano</i> , 2014 , 8, 5746-56	16.7	22

405	Metal Oxide Nanoparticle Photoresists for EUV Patterning. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2014 , 27, 663-666	0.7	33
404	Line width roughness reduction by rational design of photoacid generator for sub-millisecond laser post-exposure bake 2014 ,		2
403	Increasing sensitivity of oxide nanoparticle photoresists 2014,		9
402	Control of PS-b-PMMA directed self-assembly registration by laser induced millisecond thermal annealing 2014 ,		11
401	Nanopatterning with tailored molecules 2014 ,		2
400	The solvent problem: Redissolution of macromolecules in solution-processed organic electronics. <i>Macromolecular Research</i> , 2013 , 21, 248-256	1.9	16
399	Biodegradability, cytotoxicity, and physicochemical treatability of two novel perfluorooctane sulfonate-free photoacid generators. <i>Archives of Environmental Contamination and Toxicology</i> , 2013 , 64, 187-97	3.2	5
398	Inkjet printing of fluorinated materials and their application to patterning organic semiconductors. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 5647	7.1	8
397	Responsive and patterned polymer brushes. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2013 , 51, 1457-1472	2.6	46
396	A brief guide to polymer nomenclature from IUPAC. Colloid and Polymer Science, 2013, 291, 457-458	2.4	2
395	A Brief Guide to Polymer Nomenclature. Polymer Degradation and Stability, 2013, 98, 1-2	4.7	4
394	Early detection of Candida albicans biofilms at porous electrodes. <i>Analytical Biochemistry</i> , 2013 , 433, 192-201	3.1	12
393	Fibronectin conformation regulates the proangiogenic capability of tumor-associated adipogenic stromal cells. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2013 , 1830, 4314-20	4	32
392	ConfChem Conference on A Virtual Colloquium to Sustain and Celebrate IYC 2011 Initiatives in Global Chemical Education The Continuing Celebration of IYC 2011: What the IUPAC Polymer Division Is Doing To Keep Things Going. <i>Journal of Chemical Education</i> , 2013 , 90, 1559-1560	2.4	1
391	Improved antifouling properties of polymer membranes using a 'layer-by-layer' mediated method. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 5651-5658	7.3	33
390	From surface coatings to polymer nanofilms: lifting off polymer brushes. <i>RSC Advances</i> , 2013 , 3, 18482	3.7	4
389	A Brief Guide to Polymer Nomenclature. <i>Polymer</i> , 2013 , 54, 3-4	3.9	5
388	A Brief Guide to Polymer Nomenclature. <i>Polymer International</i> , 2013 , 62, I-II	3.3	1

(2012-2013)

387	Photo-cleavable anti-fouling polymer brushes: A simple and versatile platform for multicomponent protein patterning. <i>Polymer</i> , 2013 , 54, 1762-1767	3.9	14	
386	A brief guide to polymer nomenclature. <i>Reactive and Functional Polymers</i> , 2013 , 73, iv-v	4.6	1	
385	Characterization of Polymer Brush Membranes via HF Etch Liftoff Technique <i>ACS Macro Letters</i> , 2013 , 2, 241-245	6.6	16	
384	Orthogonal patterning of multiple biomolecules using an organic fluorinated resist and imprint lithography. <i>Biomacromolecules</i> , 2013 , 14, 993-1002	6.9	16	
383	Semi-perfluoroalkyl polyfluorene with varying fluorine content: synthesis and photophysical properties. <i>Polymer Chemistry</i> , 2013 , 4, 5291	4.9	8	
382	Biomimetic polymer brushes containing tethered acetylcholine analogs for protein and hippocampal neuronal cell patterning. <i>Biomacromolecules</i> , 2013 , 14, 529-37	6.9	39	
381	Oxide nanoparticle EUV resists: toward understanding the mechanism of positive and negative tone patterning 2013 ,		16	
380	Line edge roughness of high deprotection activation energy photoresist by using sub-millisecond post exposure bake 2013 ,		4	
379	Non-aqueous negative-tone development of inorganic metal oxide nanoparticle photoresists for next generation lithography 2013 ,		4	
378	Nanoparticle Photoresists: Ligand Exchange as a New, Sensitive EUV Patterning Mechanism. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 659-664	0.7	30	
377	Combinatorial techniques to efficiently investigate and optimize organic thin film processing and properties. <i>Molecules</i> , 2013 , 18, 4120-39	4.8	4	
376	Polymer Brushes as Functional, Patterned Surfaces for Nanobiotechnology. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2013 , 25, 53-56	0.7	8	
375	The role of hydrogels with tethered acetylcholine functionality on the adhesion and viability of hippocampal neurons and glial cells. <i>Biomaterials</i> , 2012 , 33, 2473-81	15.6	27	
374	Amphiphilic block copolymer surface composition: Effects of spin coating versus spray coating. <i>Polymer</i> , 2012 , 53, 1321-1327	3.9	13	
373	Terminology for aggregation and self-assembly in polymer science (IUPAC Recommendations 2013). <i>Pure and Applied Chemistry</i> , 2012 , 85, 463-492	2.1	17	
372	Reconstruction of surfaces from mixed hydrocarbon and PEG components in water: responsive surfaces aid fouling release. <i>Biomacromolecules</i> , 2012 , 13, 1864-74	6.9	37	
371	Neutron reflectivity characterization of the photoacid reaction-diffusion latent and developed images of molecular resists for extreme ultraviolet lithography. <i>Langmuir</i> , 2012 , 28, 7665-78	4	12	
370	Dual Mode Patterning of Fluorine-Containing Block Copolymers through Combined Top-down and Bottom-up Lithography. <i>Chemistry of Materials</i> , 2012 , 24, 1454-1461	9.6	31	

369	Tailored star block copolymer architecture for high performance chemically amplified resists. <i>Advanced Materials</i> , 2012 , 24, 5939-44	24	10
368	Preparation and characterization of amphiphilic triblock terpolymer-based nanofibers as antifouling biomaterials. <i>Biomacromolecules</i> , 2012 , 13, 1606-14	6.9	24
367	Kinetic rates of thermal transformations and diffusion in polymer systems measured during sub-millisecond laser-induced heating. <i>ACS Nano</i> , 2012 , 6, 5830-6	16.7	25
366	Organic field-effect transistors and solar cells using novel high electron-affinity conjugated copolymers based on alkylbenzotriazole and benzothiadiazole. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4436		26
365	Environmentally friendly patterning of thin films in linear methyl siloxanes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5746		9
364	Tailored star-shaped statistical teroligomers via ATRP for lithographic applications. <i>Journal of Materials Chemistry</i> , 2012 , 22, 73-79		12
363	Multicomponent Physical Vapor Deposited Films with Homogeneous Molecular Material Distribution Featuring Improved Resist Sensitivity. <i>Advanced Functional Materials</i> , 2012 , 22, 3865-3873	15.6	4
362	Electrical control of protein conformation. Advanced Materials, 2012, 24, 2501-5	24	62
361	Tightly bound ligands for hafnium nanoparticle EUV resists 2012,		2
360	A brief guide to polymer nomenclature (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2012 , 84, 2167-2169	2.1	30
359	A new inorganic EUV resist with high-etch resistance 2012 ,		24
358	Synthesis and characterization of high-throughput nanofabricated poly(4-hydroxy styrene) membranes for in vitro models of barrier tissue. <i>Tissue Engineering - Part C: Methods</i> , 2012 , 18, 667-76	2.9	10
357	Deprotection reaction kinetics in chemically amplified photoresists determined by sub-millisecond post exposure bake 2012 ,		1
356	Investigation of acid diffusion during laser spike annealing with systematically designed photoacid generators 2012 ,		4
355	Nanoparticle photoresists from HfO2 and ZrO2 for EUV patterning. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2012 , 25, 583-586	0.7	37
354	Top-down Meets Bottom up: Block Copolymers with Photoreactive Segments. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2012 , 25, 17-20	0.7	3
353	New poly(dimethylsiloxane)/poly(perfluorooctylethyl acrylate) block copolymers: structure and order across multiple length scales in thin films. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15357		32
352	Block Copolymer Nanostructured Thin Films for Advanced Patterning 2011 , 763-790		2

(2011-2011)

351	A general approach to controlling the surface composition of poly(ethylene oxide)-based block copolymers for antifouling coatings. <i>Langmuir</i> , 2011 , 27, 13762-72	4	102	
350	High-performance electron-transporting polymers derived from a heteroaryl bis(trifluoroborate). Journal of the American Chemical Society, 2011 , 133, 9949-51	16.4	72	
349	Characterization of the Non-uniform Reaction in Chemically Amplified Calix[4]resorcinarene Molecular Resist Thin Films. <i>Australian Journal of Chemistry</i> , 2011 , 64, 1065	1.2	4	
348	Patterning by Photolithography 2011 , 475-499		2	
347	Polymer brushes for electrochemical biosensors. <i>Soft Matter</i> , 2011 , 7, 297-302	3.6	55	
346	Orthogonal processing: A new strategy for organic electronics. <i>Chemical Science</i> , 2011 , 2, 1178	9.4	92	
345	Photoinduced ordering of block copolymers. <i>Nano Letters</i> , 2011 , 11, 1153-60	11.5	20	
344	Applications of Controlled Macromolecular Architectures to Lithography 2011 , 2295-2330		1	
343	Time Dependent Behavior of Chemically Amplified Resist Characterized under Sub-millisecond Post Exposure Bake. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2011 , 24, 487-490	0.7	6	
342	Studies of Environmentally Friendly Solvent-based Developers. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2011 , 24, 239-240	0.7	1	
341	Fouling-resistant polymer brush coatings. <i>Polymer</i> , 2011 , 52, 5419-5425	3.9	39	
340	Fluorine-free mixed amphiphilic polymers based on PDMS and PEG side chains for fouling release applications. <i>Biofouling</i> , 2011 , 27, 589-602	3.3	80	
339	Synthesis, molecular, and morphological characterization of initial and modified diblock copolymers with organic acid chloride derivatives. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 4292-4305	2.5	15	
338	Orthogonal processing and patterning enabled by highly fluorinated light-emitting polymers. <i>Advanced Materials</i> , 2011 , 23, 735-9	24	35	
337	Detection of transmitter release from single living cells using conducting polymer microelectrodes. <i>Advanced Materials</i> , 2011 , 23, H184-8	24	67	
336	Combinatorial optimization of a molecular glass photoresist system for electron beam lithography. <i>Advanced Materials</i> , 2011 , 23, 5404-8	24	14	
335	Photo-switchable polyelectrolyte brush for dual protein patterning. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13789		12	
334	Properties of PVA/HfO2 Hybrid Electrospun Fibers and Calcined Inorganic HfO2 Fibers. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 5535-5544	3.8	18	

333	Robert W. Lenz. <i>Macromolecules</i> , 2011 , 44, 1731-1731	5.5	
332	Triblock Copolymers with Grafted Fluorine-Free, Amphiphilic, Non-Ionic Side Chains for Antifouling and Fouling-Release Applications. <i>Macromolecules</i> , 2011 , 44, 4783-4792	5.5	89
331	Cellular responses to patterned poly(acrylic acid) brushes. <i>Langmuir</i> , 2011 , 27, 7016-23	4	40
330	Fluorinated amphiphilic polymers and their blends for fouling-release applications: the benefits of a triblock copolymer surface. <i>ACS Applied Materials & Distributed Materia</i>	9.5	95
329	Probing electric field response of LC thermosets via time-resolved X-ray and dielectric spectroscopy. <i>Polymer</i> , 2011 , 52, 2206-2213	3.9	5
328	LWR reduction and flow of chemically amplified resist patterns during sub-millisecond heating 2011 ,		10
327	Addressing challenges in lithography using sub-millisecond post exposure bake of chemically amplified resists 2011 ,		4
326	Fabrication of polymer-based electronic circuits using photolithography. <i>Applied Physics Letters</i> , 2011 , 99, 183308	3.4	17
325	Development of an inorganic nanoparticle photoresist for EUV, e-beam, and 193nm lithography 2011 ,		25
324	Emerging applications of stimuli-responsive polymer materials. <i>Nature Materials</i> , 2010 , 9, 101-13	27	4474
324 323	Emerging applications of stimuli-responsive polymer materials. <i>Nature Materials</i> , 2010 , 9, 101-13 New self-assembly strategies for next generation lithography 2010 ,	27	1
		27	
323	New self-assembly strategies for next generation lithography 2010 ,	27	1
323	New self-assembly strategies for next generation lithography 2010, Development of an inorganic photoresist for DUV, EUV, and electron beam imaging 2010, All-dry processible and PAG-attached molecular glasses for improved lithographic performance	1.3	1 26
323 322 321	New self-assembly strategies for next generation lithography 2010, Development of an inorganic photoresist for DUV, EUV, and electron beam imaging 2010, All-dry processible and PAG-attached molecular glasses for improved lithographic performance 2010, An electrochemical glucose sensor from an organically modified nanocomposite of viologen and		1 26 1
323 322 321 320	New self-assembly strategies for next generation lithography 2010, Development of an inorganic photoresist for DUV, EUV, and electron beam imaging 2010, All-dry processible and PAG-attached molecular glasses for improved lithographic performance 2010, An electrochemical glucose sensor from an organically modified nanocomposite of viologen and TiO2. Journal of Nanoscience and Nanotechnology, 2010, 10, 6869-73		1 26 1 6
323 322 321 320 319	New self-assembly strategies for next generation lithography 2010, Development of an inorganic photoresist for DUV, EUV, and electron beam imaging 2010, All-dry processible and PAG-attached molecular glasses for improved lithographic performance 2010, An electrochemical glucose sensor from an organically modified nanocomposite of viologen and TiO2. Journal of Nanoscience and Nanotechnology, 2010, 10, 6869-73 Comparison of star and linear ArF resists 2010, Sub-millisecond post exposure bake of chemically amplified resists by CO 2 laser heat treatment		1 26 1 6 3

(2009-2010)

315	Amphiphilic surface active triblock copolymers with mixed hydrophobic and hydrophilic side chains for tuned marine fouling-release properties. <i>Langmuir</i> , 2010 , 26, 9772-81	4	90
314	Semiperfluoroalkyl Polyfluorenes for Orthogonal Processing in Fluorous Solvents. <i>Macromolecules</i> , 2010 , 43, 1195-1198	5.5	36
313	Surface structures of an amphiphilic tri-block copolymer in air and in water probed using sum frequency generation vibrational spectroscopy. <i>Langmuir</i> , 2010 , 26, 11337-43	4	16
312	NEXAFS Depth Profiling of Surface Segregation in Block Copolymer Thin Films. <i>Macromolecules</i> , 2010 , 43, 4733-4743	5.5	43
311	Direct patterning of intrinsically electron beam sensitive polymer brushes. ACS Nano, 2010, 4, 771-80	16.7	64
310	Characterization of the Photoacid Diffusion Length and Reaction Kinetics in EUV Photoresists with IR Spectroscopy. <i>Macromolecules</i> , 2010 , 43, 4275-4286	5.5	39
309	Direct synthesis of quaternized polymer brushes and their application for guiding neuronal growth. <i>Biomacromolecules</i> , 2010 , 11, 2027-32	6.9	24
308	High refractive index and high transparency HfO2 nanocomposites for next generation lithography. Journal of Materials Chemistry, 2010 , 20, 5186		50
307	Reversible Morphology Control in Block Copolymer Films via Solvent Vapor Processing: An In Situ GISAXS study. <i>Macromolecules</i> , 2010 , 43, 4253-4260	5.5	144
306	Orthogonal lithography for organic electronics 2010 ,		5
306 305	Orthogonal lithography for organic electronics 2010 , Architectural Effects on Acid Reaction-Diffusion Kinetics in Molecular Glass Photoresists. <i>Chemistry of Materials</i> , 2010 , 22, 3093-3098	9.6	5
	Architectural Effects on Acid Reaction-Diffusion Kinetics in Molecular Glass Photoresists. <i>Chemistry</i>	9.6 9.5	
305	Architectural Effects on Acid Reaction-Diffusion Kinetics in Molecular Glass Photoresists. <i>Chemistry of Materials</i> , 2010 , 22, 3093-3098 Antimicrobial behavior of semifluorinated-quaternized triblock copolymers against airborne and	9.5	15
305	Architectural Effects on Acid Reaction-Diffusion Kinetics in Molecular Glass Photoresists. <i>Chemistry of Materials</i> , 2010 , 22, 3093-3098 Antimicrobial behavior of semifluorinated-quaternized triblock copolymers against airborne and marine microorganisms. <i>ACS Applied Materials & Discourse Materials</i> , 2010 , 2, 703-11 A Glucose Sensor Based on an Organic Electrochemical Transistor Structure Using a Vapor	9.5	15 45
305 304 303	Architectural Effects on Acid Reaction-Diffusion Kinetics in Molecular Glass Photoresists. <i>Chemistry of Materials</i> , 2010 , 22, 3093-3098 Antimicrobial behavior of semifluorinated-quaternized triblock copolymers against airborne and marine microorganisms. <i>ACS Applied Materials & Discording Communication Co</i>	9.5 AÉ10	15 45 19
305 304 303 302	Architectural Effects on Acid Reaction-Diffusion Kinetics in Molecular Glass Photoresists. <i>Chemistry of Materials</i> , 2010 , 22, 3093-3098 Antimicrobial behavior of semifluorinated-quaternized triblock copolymers against airborne and marine microorganisms. <i>ACS Applied Materials & Discording Communication of Physics</i> , 2010 , 2, 703-11 A Glucose Sensor Based on an Organic Electrochemical Transistor Structure Using a Vapor Polymerized Poly(3,4-ethylenedioxythiophene) Layer. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 017. Protein adsorption resistance of anti-biofouling block copolymers containing amphiphilic side chains. <i>Soft Matter</i> , 2010 , 6, 3237 Synthesis and Processing of Organic Materials in Supercritical Carbon Dioxide. <i>MRS Bulletin</i> , 2009 ,	9.5 AÉ10 3.6	15 45 19 76
305 304 303 302 301	Architectural Effects on Acid Reaction-Diffusion Kinetics in Molecular Glass Photoresists. <i>Chemistry of Materials</i> , 2010 , 22, 3093-3098 Antimicrobial behavior of semifluorinated-quaternized triblock copolymers against airborne and marine microorganisms. <i>ACS Applied Materials & Discording Communication of Communication of Applied Materials & Discording Communication of Communication of Applied Physics, 2010, 49, 016 A Glucose Sensor Based on an Organic Electrochemical Transistor Structure Using a Vapor Polymerized Poly(3,4-ethylenedioxythiophene) Layer. <i>Japanese Journal of Applied Physics</i>, 2010, 49, 016 Protein adsorption resistance of anti-biofouling block copolymers containing amphiphilic side chains. <i>Soft Matter</i>, 2010, 6, 3237 Synthesis and Processing of Organic Materials in Supercritical Carbon Dioxide. <i>MRS Bulletin</i>, 2009, 34, 108-115</i>	9.5 AÉ10 3.6	15 45 19 76

297	Orthogonal Patterning of PEDOT:PSS for Organic Electronics using Hydrofluoroether Solvents. <i>Advanced Materials</i> , 2009 , 21, 2314-2317	24	146
296	Fluorine- and siloxane-containing polymers for supercritical carbon dioxide lithography. <i>Polymer International</i> , 2009 , 58, 302-306	3.3	9
295	Quantitative measurement of the polydispersity in the extent of functionalization of glass-forming calix[4]resorcinarenes. <i>Rapid Communications in Mass Spectrometry</i> , 2009 , 23, 1957-62	2.2	2
294	Surface engineering of styrene/PEGylated-fluoroalkyl styrene block copolymer thin films. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 267-284	2.5	52
293	ABC triblock surface active block copolymer with grafted ethoxylated fluoroalkyl amphiphilic side chains for marine antifouling/fouling-release applications. <i>Langmuir</i> , 2009 , 25, 12266-74	4	135
292	Selective area control of self-assembled pattern architecture using a lithographically patternable block copolymer. <i>ACS Nano</i> , 2009 , 3, 1761-6	16.7	54
291	Development of a directly patterned low-surface-energy polymer brush in supercritical carbon dioxide. <i>ACS Applied Materials & amp; Interfaces</i> , 2009 , 1, 2013-20	9.5	10
290	Direct three-dimensional microfabrication of hydrogels via two-photon lithography in aqueous solution. <i>Chemistry of Materials</i> , 2009 , 21, 2003-2006	9.6	96
289	Sulfonium Salts of Alicyclic Group Functionalized Semifluorinated Alkyl Ether Sulfonates As Photoacid Generators. <i>Chemistry of Materials</i> , 2009 , 21, 4037-4046	9.6	11
288	Release of nerve growth factor from HEMA hydrogel-coated substrates and its effect on the differentiation of neural cells. <i>Biomacromolecules</i> , 2009 , 10, 174-83	6.9	103
287	Preventing nonspecific adsorption on polymer brush covered gold electrodes using a modified ATRP initiator. <i>Biomacromolecules</i> , 2009 , 10, 2750-8	6.9	34
286	Research in Macromolecular Science: Challenges and Opportunities for the Next Decade. <i>Macromolecules</i> , 2009 , 42, 465-471	5.5	139
285	Fluorinated Quaternary Ammonium Salts as Dissolution Aids for Polar Polymers in Environmentally Benign Supercritical Carbon Dioxide. <i>Chemistry of Materials</i> , 2009 , 21, 3125-3135	9.6	11
284	Solid state NMR investigation of photoresist molecular glasses including blend behavior with a photoacid generator. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2683		14
283	Cross-linkable molecular glasses: low dielectric constant materials patternable in hydrofluoroethers. <i>ACS Applied Materials & amp; Interfaces</i> , 2009 , 1, 2363-70	9.5	25
282	Acid-diffusion behaviour in organic thin films and its effect on patterning. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2986		16
281	High voltage polymer solar cell patterned with photolithography. <i>Journal of Materials Chemistry</i> , 2009 , 19, 5394		13
280	Environmentally friendly patterning of molecular waterwheel (Noria) in supercritical carbon dioxide. <i>Journal of Materials Chemistry</i> , 2009 , 19, 4622		25

(2008-2009)

279	Chemistry, 2009 , 19, 505-513		34
278	Dissociation behavior of weak polyelectrolyte brushes on a planar surface. <i>Langmuir</i> , 2009 , 25, 4774-9	4	140
277	Orthogonal Processing: A Novel Photolithographic Patterning Method for Organic Electronics. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 565-569	0.7	23
276	Molecular glass resists for next-generation lithography 2009,		3
275	High refractive index nanoparticle fluids for 193-nm immersion lithography 2009,		1
274	Settlement of Ulva zoospores on patterned fluorinated and PEGylated monolayer surfaces. <i>Langmuir</i> , 2008 , 24, 503-10	4	116
273	Hydroxyphenylbenzene derivatives as glass forming molecules for high resolution photoresists. Journal of Materials Chemistry, 2008 , 18, 1903		19
272	Towards environmentally friendly, dry deposited, water developable molecular glass photoresists. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 1257-62	3.6	15
271	Dry photolithographic patterning process for organic electronic devices using supercritical carbon dioxide as a solvent. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3087		39
270	A novel noria (water-wheel-like cyclic oligomer) derivative as a chemically amplified electron-beam resist material. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3588		46
269	A Fundamental Study on Dissolution Behavior of High-Resolution Molecular Glass Photoresists. <i>Chemistry of Materials</i> , 2008 , 20, 7292-7300	9.6	21
268	Study of the Structure P roperties Relationship of Phenolic Molecular Glass Resists for Next Generation Photolithography. <i>Chemistry of Materials</i> , 2008 , 20, 1606-1613	9.6	36
267	Three-dimensionally-patterned submicrometer-scale hydrogel/air networks that offer a new platform for biomedical applications. <i>Nano Letters</i> , 2008 , 8, 1456-60	11.5	33
266	Simple Fabrication of Micropatterned Mesoporous Silica Films Using Photoacid Generators in Block Copolymers Chemistry of Materials, 2008 , 20, 604-606	9.6	19
265	Nonplanar Surface Organization of Monodendrons in Side-Chain Modified Liquid Crystalline Block Copolymers <i>Macromolecules</i> , 2008 , 41, 9940-9945	5.5	3
264	Acid-sensitive semiperfluoroalkyl resorcinarene: an imaging material for organic electronics. Journal of the American Chemical Society, 2008 , 130, 11564-5	16.4	62
263	Acid-Labile, Chain-Scission Polymer Systems Used as Positive-Tone Photoresists Developable in Supercritical CO2. <i>Chemistry of Materials</i> , 2008 , 20, 2932-2936	9.6	11
262	Control of self-assembly of lithographically patternable block copolymer films. ACS Nano, 2008, 2, 1396	- 4 62⁄7	130

261	Molecular glass resists for next generation lithography 2008,		5
260	Supercritical Carbon Dioxide Compatible Salts: Synthesis and Application to Next Generation Lithography. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2008 , 21, 393-396	0.7	2
259	The use of Nanocomposite Materials for High Refractive Index Immersion Lithography. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2008 , 21, 621-629	0.7	6
258	The effect of EUV molecular glass architecture on the bulk dispersion of a photo-acid generator 2008 ,		2
257	Development of an operational high refractive index resist for 193nm immersion lithography 2008,		3
256	A comparison of the reaction-diffusion kinetics between model-EUV polymer and molecular-glass photoresists 2008 ,		6
255	Characterization of the latent image to developed image in model EUV photoresists 2008,		2
254	Development and evaluation of 193nm immersion generation-three fluid candidates 2008,		2
253	An Efficient Route to Mesoporous Silica Films with Perpendicular Nanochannels. <i>Advanced Materials</i> , 2008 , 20, 246-251	24	48
252	Calix[4]resorcinarene Derivatives as High-Resolution Resist Materials for Supercritical CO2 Processing. <i>Advanced Materials</i> , 2008 , 20, 1303-1309	24	12
251	Hydrofluoroethers as Orthogonal Solvents for the Chemical Processing of Organic Electronic Materials. <i>Advanced Materials</i> , 2008 , 20, 3481-3484	24	128
250	Advances in polymers for anti-biofouling surfaces. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3405		680
249	Dissolution phenomena of phenolic molecular glass photoresist films in supercritical CO2. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4598		15
248	Surface Induced Tilt Propagation in Thin Films of Semifluorinated Liquid Crystalline Side Chain Block Copolymers. <i>Macromolecules</i> , 2007 , 40, 81-89	5.5	42
247	Surface organization, light-driven surface changes, and stability of semifluorinated azobenzene polymers. <i>Langmuir</i> , 2007 , 23, 5110-9	4	53
246	Diazonaphthoquinone Molecular Glass Photoresists: Patterning without Chemical Amplification. <i>Chemistry of Materials</i> , 2007 , 19, 3780-3786	9.6	37
245	Arylonium Photoacid Generators Containing Environmentally Compatible Aryloxyperfluoroalkanesulfonate Groups. <i>Chemistry of Materials</i> , 2007 , 19, 1434-1444	9.6	32
244	Physical Vapor Deposition of Molecular Glass Photoresists: A New Route to Chemically Amplified Patterning. <i>Advanced Functional Materials</i> , 2007 , 17, 2336-2342	15.6	18

(2006-2007)

243	Creating Defined 3-D Defects Inside an Opaline Ormocer Matrix with Two-Photon Lithography. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 922-926	4.8	9
242	Insight in the role of bovine serum albumin for promoting the in situ surface growth of polyhydroxybutyrate (PHB) on patterned surfaces via enzymatic surface-initiated polymerization. <i>Colloids and Surfaces B: Biointerfaces</i> , 2007 , 60, 68-79	6	12
241	Phenolic molecular glasses as resists for next-generation lithography 2007 , 6519, 1291		22
240	Control of Morphology Orientation in Lithographically Patternable Diblock Copolymers. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2007 , 20, 519-522	0.7	4
239	Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces. <i>Biomacromolecules</i> , 2007 , 8, 3082	-93 29	131
238	Positive- and Negative-Tone CVD Polyacrylic Electron-Beam Resists Developable by Supercritical CO2. <i>Chemical Vapor Deposition</i> , 2006 , 12, 259-262		17
237	Real-time analysis of enzymatic surface-initiated polymerization using surface plasmon resonance (SPR). <i>Macromolecular Bioscience</i> , 2006 , 6, 145-52	5.5	14
236	Control and Suppression of Surface Relief Gratings in Liquid-Crystalline Perfluoroalkyl\(\textit{Azobenzene}\) Polymers. <i>Advanced Functional Materials</i> , 2006 , 16, 1577-1581	15.6	46
235	High-Resolution Patterning of Molecular Glasses Using Supercritical Carbon Dioxide. <i>Advanced Materials</i> , 2006 , 18, 442-446	24	41
234	Molecular glass resists for next generation lithography 2006 , 6153, 467		12
233	Absorbance measurement of polymers at extreme ultraviolet wavelength: Correlation between experimental and theoretical calculations. <i>Journal of Vacuum Science & Technology B</i> , 2006 , 24, 1822		23
232	Surfaces of fluorinated pyridinium block copolymers with enhanced antibacterial activity. <i>Langmuir</i> , 2006 , 22, 11255-66	4	114
231	Sub-50 nm feature sizes using positive tone molecular glass resists for EUV lithography. <i>Journal of</i>		66
	Materials Chemistry, 2006 , 16, 1470		00
230		9.6	92
	Materials Chemistry, 2006 , 16, 1470	9.6 6.9	
230	Materials Chemistry, 2006, 16, 1470 Molecular Glass Resists for High-Resolution Patterning. Chemistry of Materials, 2006, 18, 3404-3411 Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom Navicula and the green alga Ulva.		92
230	Molecular Glass Resists for High-Resolution Patterning. <i>Chemistry of Materials</i> , 2006 , 18, 3404-3411 Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom Navicula and the green alga Ulva. <i>Biomacromolecules</i> , 2006 , 7, 1449-62 Functionalized surface arrays for spatial targeting of immune cell signaling. <i>Journal of the American</i>	6.9	92

225	Adamantane based molecular glass resist for 193 nm lithography 2006 ,		4
224	Supercritical CO 2 for high resolution photoresist development 2006 ,		1
223	Molecular glass resists for EUV lithography 2006,		5
222	Defining the Biology-Materials Interface using both 2D and 3D Lithography. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2006 , 19, 435-440	0.7	3
221	New PFOS Free Photoresist Systems for EUV Lithography. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2006 , 19, 515-520	0.7	6
220	Recent progress in high resolution lithography. <i>Polymers for Advanced Technologies</i> , 2006 , 17, 94-103	3.2	191
219	Block copolymer patterns and templates. <i>Materials Today</i> , 2006 , 9, 30-39	21.8	196
218	Dinitrophenyl ligand substrates and their application to immunosensors. <i>Biosensors and Bioelectronics</i> , 2006 , 22, 63-70	11.8	14
217	Molecular glass photoresists for advanced lithography. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1693		68
216	Materials for future lithography (Invited Paper) 2005 , 5753, 1		15
215	Three-Dimensional Microfabrication by Two-Photon Lithography. MRS Bulletin, 2005, 30, 976-982	3.2	39
214	Low Surface Energy Characteristics of Mesophase-Forming ABC and ACB Triblock Copolymers with Fluorinated B Blocks. <i>Molecular Crystals and Liquid Crystals</i> , 2005 , 441, 211-226	0.5	20
213	End-functionalization of poly(3-hydroxybutyrate)via genetic engineering for solid surface modification. <i>Chemical Communications</i> , 2005 , 1956-8	5.8	4
212	Oligo(ethylene glycol) containing polymer brushes as bioselective surfaces. <i>Langmuir</i> , 2005 , 21, 2495-50	04	125
211	Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives. <i>Biomacromolecules</i> , 2005 , 6, 2427-48	6.9	621
210	The convergence of top-down and bottom-up nanofabrication: formation of 3D structures 2005 , 5592, 12		
209	Inorganic polymer resists for EUVL 2005 , 5753, 732		5
208	Lithography Based on Molecular Glasses. <i>Journal of Photopolymer Science and Technology =</i> [Fotoporima Konwakai Shi], 2005 , 18, 431-434	0.7	29

(2004-2005)

207	Silicon Containing Organic-Inorganic Hybrid Materials as EUV Photoresists. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2005 , 18, 481-487	0.7	5
206	Molecular templates for bio-specific recognition by low-energy electron beam lithography. <i>Nanobiotechnology</i> , 2005 , 1, 023-034		16
205	Functional Hydrogel Surfaces: Binding Kinesin-Based Molecular Motor Proteins to Selected Patterned Sites. <i>Advanced Functional Materials</i> , 2005 , 15, 1303-1309	15.6	26
204	Synthesis, Characterization and Lithography Performance of Photoacid Generator with Short Perfluoroalkyl Anion. <i>Polymer Bulletin</i> , 2005 , 55, 333-340	2.4	4
203	Directing self-assembly in macromolecular systems: Hydrogen bonding in ordered polymers. <i>Pure and Applied Chemistry</i> , 2004 , 76, 1337-1343	2.1	13
202	Towards all-dry lithography: Electron-beam patternable poly(glycidyl methacrylate) thin films from hot filament chemical vapor deposition. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2004 , 22, 2473		31
201	Patternable block copolymers with high transparency at 157 nm: Fluorocarbinol functionalized poly(isoprene-b-cyclohexane). <i>Polymer Bulletin</i> , 2004 , 52, 321-328	2.4	4
200	Managing polymer surface structure using surface active block copolymers in block copolymer mixtures. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2004 , 42, 411-420	2.6	19
199	Fluorinated polymers: liquid crystalline properties and applications in lithography. <i>Chemical Record</i> , 2004 , 4, 315-30	6.6	49
198	Orientational Switching of Mesogens and Microdomains in Hydrogen-Bonded Side-Chain Liquid-Crystalline Block Copolymers Using AC Electric Fields. <i>Advanced Functional Materials</i> , 2004 , 14, 364-370	15.6	57
197	Additive-Driven Phase-Selective Chemistry in Block Copolymer Thin Films: The Convergence of TopDown and BottomDp Approaches. <i>Advanced Materials</i> , 2004 , 16, 953-957	24	93
196	Swelling and dissolution rate measurements of polymer thin films in supercritical carbon dioxide. <i>Journal of Supercritical Fluids</i> , 2004 , 31, 323-328	4.2	17
195	Controlled degradation of epoxy networks: analysis of crosslink density and glass transition temperature changes in thermally reworkable thermosets. <i>Polymer</i> , 2004 , 45, 1939-1950	3.9	93
194	Heat capacity measurements of two-dimensional self-assembled hexadecanethiol monolayers on polycrystalline gold. <i>Applied Physics Letters</i> , 2004 , 84, 5198-5200	3.4	34
193	Photoprocessable Polymer Opals. <i>Chemistry of Materials</i> , 2004 , 16, 5286-5292	9.6	26
192	Spatially Controlled Fabrication of Nanoporous Block Copolymers. <i>Chemistry of Materials</i> , 2004 , 16, 38	00 ₉ 380	8 95
191	Tribute to Professor Helmut Ringsdorf. <i>Macromolecules</i> , 2004 , 37, 8485-8486	5.5	1
190	Alignment of Self-Assembled Hierarchical Microstructure in Liquid Crystalline Diblock Copolymers Using High Magnetic Fields. <i>Macromolecules</i> , 2004 , 37, 9903-9908	5.5	117

189	Control of surface properties using fluorinated polymer brushes produced by surface-initiated controlled radical polymerization. <i>Langmuir</i> , 2004 , 20, 10498-506	4	78
188	Attogram detection using nanoelectromechanical oscillators. <i>Journal of Applied Physics</i> , 2004 , 95, 3694	- <u>37</u> 93	475
187	Two-Photon Three-Dimensional Microfabrication of Poly(Dimethylsiloxane) Elastomers. <i>Chemistry of Materials</i> , 2004 , 16, 5556-5558	9.6	87
186	Enzymatic surface-initiated polymerization: a novel approach for the in situ solid-phase synthesis of biocompatible polymer poly(3-hydroxybutyrate). <i>Biomacromolecules</i> , 2004 , 5, 889-94	6.9	35
185	Silicon backbone polymers as EUV resists 2004 ,		5
184	Structural organisations in polystyrene-based semifluorinated block copolymers for low surface energy coatings. <i>Surface Coatings International Part B: Coatings Transactions</i> , 2004 , 87, 77-82		4
183	Synthesis and Phase Behavior of Side-Group Liquid Crystalline Polymers in Nematic Solvents. <i>Macromolecules</i> , 2004 , 37, 3569-3575	5.5	9
182	Novel resists with nontraditional compositions for EUV lithography 2004,		8
181	Preparation and Two-Photon Lithography of a Sulfur Containing Resin with High Refractive Index. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2004 , 17, 115-118	0.7	14
180	Fluoropolymer resists for 157 nm lithography 2003 , 5039, 539		3
179	Novel silicon-containing polymers as photoresist materials for EUV lithography 2003,		8
178	Malolactonate polymers and copolymers for biomedical applications. <i>Macromolecular Symposia</i> , 2003 , 197, 303-314	0.8	4
177	Surface patterning and biological evaluation of semi-interpenetrated poly(HEMA)/poly(alkyl malolactonate)s. <i>Macromolecular Symposia</i> , 2003 , 197, 369-380	0.8	8
176	Strategies for High Transparency Acrylate Resists for 157 nm Lithography. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2003 , 16, 573-580	0.7	4
175	Lithographic Patterning with Block Copolymers. <i>Journal of Photopolymer Science and Technology =</i> [Fotoporima Konwakai Shi], 2003 , 16, 347-350	0.7	9
174	Chemically Amplified Positive Resists for Two-Photon Three-Dimensional Microfabrication. <i>Advanced Materials</i> , 2003 , 15, 517-521	24	62
173	An overview of supercritical CO2 applications in microelectronics processing. <i>Microelectronic Engineering</i> , 2003 , 65, 145-152	2.5	157

(2002-2003)

171	Deintercalation of a chemically switchable polymer from a layered silicate nanocomposite. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2003 , 41, 3151-3159	2.6	6
170	Rodfloil block copolymers: An iterative synthetic approach via living free-radical procedures. Journal of Polymer Science Part A, 2003 , 41, 3640-3656	2.5	44
169	Positive-Tone Photoresist Process for Supercritical Carbon Dioxide Development. <i>Chemistry of Materials</i> , 2003 , 15, 4893-4895	9.6	25
168	Methods for the topographical patterning and patterned surface modification of hydrogels based on hydroxyethyl methacrylate. <i>Biomacromolecules</i> , 2003 , 4, 1126-31	6.9	64
167	Structural Studies of Extension-Induced Mesophase Formation in Poly(diethylsiloxane) Elastomers: In Situ Synchrotron WAXS and SAXS. <i>Macromolecules</i> , 2003 , 36, 1975-1981	5.5	28
166	Liquid Crystalline Rod © oil Block Copolymers by Stable Free Radical Polymerization: Synthesis, Morphology, and Rheology. <i>Macromolecules</i> , 2003 , 36, 3357-3364	5.5	72
165	Coatings based on side-chain ether-linked poly(ethylene glycol) and fluorocarbon polymers for the control of marine biofouling. <i>Biofouling</i> , 2003 , 19 Suppl, 91-8	3.3	121
164	Synthesis and evaluation of novel organoelement resists for EUV lithography 2003,		7
163	Fluorinated mesogen-jacketed liquid-crystalline polymers as surface-modifying agents: Design, synthesis and characterization. <i>Macromolecular Chemistry and Physics</i> , 2002 , 203, 1573-1583	2.6	60
162	Characterization of thermally reworkable thermosets: materials for environmentally friendly processing and reuse. <i>Polymer</i> , 2002 , 43, 131-139	3.9	124
161	Study of the interlayer expansion mechanism and thermalthechanical properties of surface-initiated epoxy nanocomposites. <i>Polymer</i> , 2002 , 43, 4895-4904	3.9	177
160	Dissolution rate measurements for resist processing in supercritical carbon dioxide 2002 , 4690, 425		2
159	New Strategies for High Resolution Photoresists <i>Journal of Photopolymer Science and Technology =</i> [Fotoporima Konwakai Shi], 2002 , 15, 603-611	0.7	28
158	Organoelement resists for EUV lithography 2002 ,		3
157	Fluorinated dissolution inhibitors for 157-nm lithography 2002 , 4690, 477		2
156	High-sensitivity two-photon photoacid generator for three-dimensional microfabrication 2002 , 4809, 170		1
155	Microfabrication of hydrogels for biomedical applications 2002,		2
154	Highly transparent resist platforms for 157-nm microlithography: an update 2002,		14

153	Semifluorinated Aromatic Side-Group Polystyrene-Based Block Copolymers: Bulk Structure and Surface Orientation Studies. <i>Macromolecules</i> , 2002 , 35, 8078-8087	5.5	105
152	Tailoring Transparency of Imageable Fluoropolymers at 157 nm by Incorporation of Hexafluoroisopropyl Alcohol to Photoresist Backbones. <i>Chemistry of Materials</i> , 2002 , 14, 1306-1313	9.6	25
151	An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. <i>Science</i> , 2002 , 296, 1106-9	33.3	646
150	Self-assembly. Persistence pays off. <i>Science</i> , 2002 , 296, 859-61	33.3	14
149	Engineering low surface energy polymers through molecular design: synthetic routes to fluorinated polystyrene-based block copolymers. <i>Journal of Materials Chemistry</i> , 2002 , 12, 1684-1692		71
148	Lithographic Applications of Redox Probe Microscopy. <i>Langmuir</i> , 2001 , 17, 5932-5938	4	21
147	Rejuvenation of 248nm Resist Backbones for 157nm Lithography <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2001 , 14, 613-620	0.7	15
146	Development of a bond contribution model for structure: property correlations in dry etch studies 2001 , 4345, 945		2
145	Fluorinated 2-Vinylcyclopropane Copolymers as Low Surface Energy Materials. <i>Macromolecular Symposia</i> , 2001 , 169, 303-312	0.8	1
144	E-Beam Patterning of Hot-Filament CVD Fluorocarbon Films Using Supercritical CO2 as a Developer. <i>Chemical Vapor Deposition</i> , 2001 , 7, 195		21
143	Patterning of Polymeric Hydrogels for Biomedical Applications. <i>Macromolecular Rapid Communications</i> , 2001 , 22, 1284	4.8	32
142	Defect-mediated creep of structured materials. <i>Europhysics Letters</i> , 2001 , 54, 269-274	1.6	20
141	High-pressure cell for simultaneous small-angle x-ray scattering and laser light scattering measurements. <i>Review of Scientific Instruments</i> , 2001 , 72, 2679-2685	1.7	12
140	Highly Reactive 2,5-Disubstituted Styrene-Based Monomer Polymerized via Stable Free Radical Polymerization: Effect of Substitution and Liquid Crystallinity on Polymerization. <i>Macromolecules</i> , 2001 , 34, 5120-5124	5.5	36
139	Synthesis, Characterization, and Redox Reactivity of Novel Quinone-Containing Polymer. <i>Chemistry of Materials</i> , 2001 , 13, 2928-2932	9.6	35
	of Materials, 2001, 15, 2520 2532		
138	Periodic Surface Topology of Three-Arm Semifluorinated Alkane Monodendron Diblock Copolymers. <i>Langmuir</i> , 2001 , 17, 4342-4346	4	25
138 137	Periodic Surface Topology of Three-Arm Semifluorinated Alkane Monodendron Diblock		25

(2000-2000)

135	A solvent-free method for the synthesis of block copolymers with fluorinated pendant groups by a hydrosilylation reaction. <i>Journal of Polymer Science Part A</i> , 2000 , 38, 1179-1183	2.5	14
134	Photochromism of 4-cyanophenylazobenzene in liquid crystalline-coil AB diblock copolymers: the influence of microstructure. <i>Macromolecular Rapid Communications</i> , 2000 , 21, 1309-1312	4.8	33
133	Switching surface polarity: synthesis and characterization of a fluorinated block copolymer with surface-activetert-butoxycarbonyl groups. <i>Journal of Physical Organic Chemistry</i> , 2000 , 13, 787-795	2.1	13
132	Understanding and controlling the morphology of styreneßoprene side-group liquid crystalline diblock copolymers. <i>Polymer</i> , 2000 , 41, 8897-8907	3.9	65
131	Microdeformation of a polydomain, smectic liquid crystalline thermoset. <i>Journal of Materials Science</i> , 2000 , 35, 2079-2086	4.3	29
130	Synchrotron Radiation for Probing the Electric Field Alignment of LC Macromolecules and Polymers. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2000 , 45, 451-501	3	3
129	Synchrotron x-ray study of the smectic layer directional instability. <i>Physical Review E</i> , 2000 , 61, 1593-8	2.4	11
128	Shape persistence of synthetic polymers. <i>Science</i> , 2000 , 288, 448-9	33.3	33
127	Temperature Dependence of Molecular Orientation on the Surfaces of Semifluorinated Polymer Thin Films. <i>Langmuir</i> , 2000 , 16, 1993-1997	4	76
126	Low-Surface-Energy Fluoromethacrylate Block Copolymers with Patternable Elements. <i>Chemistry of Materials</i> , 2000 , 12, 33-40	9.6	88
125	Selectively Thermally Cleavable Fluorinated Side Chain Block Copolymers: Surface Chemistry and Surface Properties. <i>Macromolecules</i> , 2000 , 33, 1310-1320	5.5	47
124	Effect of Changing Molecular End Groups on Surface Properties: Synthesis and Characterization of Poly(styrene-b-semifluorinated isoprene) Block Copolymers with IF2H End Groups. <i>Macromolecules</i> , 2000 , 33, 8012-8019	5.5	49
123	Molecular Orientation of Single and Two-Armed Monodendron Semifluorinated Chains on Boft and Hard Tourfaces Studied Using NEXAFS. <i>Macromolecules</i> , 2000 , 33, 6068-6077	5.5	50
122	Surface Stability in Liquid-Crystalline Block Copolymers with Semifluorinated Monodendron Side Groups. <i>Macromolecules</i> , 2000 , 33, 6106-6119	5.5	103
121	Supercritical CO2 Processing for Submicron Imaging of Fluoropolymers. <i>Chemistry of Materials</i> , 2000 , 12, 41-48	9.6	81
120	The Orientation of Semifluorinated Alkanes Attached to Polymers at the Surface of Polymer Films. <i>Macromolecules</i> , 2000 , 33, 1882-1887	5.5	109
119	Fundamental Studies of Fluoropolymer Photoresists for 157 nm Lithography <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2000 , 13, 451-458	0.7	15
118	Photochromism of 4-cyanophenylazobenzene in liquid crystalline-coil AB diblock copolymers: the influence of microstructure 2000 , 21, 1309		1

117	Solid state crystalline and liquid crystalline structure of semifluorinated 1-bromoalkane compounds. <i>Liquid Crystals</i> , 1999 , 26, 637-648	2.3	34
116	Lithographic results of electron beam photoresists prepared by living free radical polymerization. <i>Polymer Bulletin</i> , 1999 , 43, 93-100	2.4	6
115	Effect of polymer architecture on self-diffusion of LC polymers. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 1999 , 37, 405-414	2.6	1
114	Liquid crystalline side chain-coil diblock copolymers by living free radical polymerization. <i>Macromolecular Rapid Communications</i> , 1999 , 20, 622-627	4.8	12
113	Mesogen-jacketed liquid crystalline polymers via stable free radical polymerization. <i>Macromolecular Chemistry and Physics</i> , 1999 , 200, 2338-2344	2.6	48
112	Development of reworkable underfills, materials, reliability and processing. <i>IEEE Transactions on Components and Packaging Technologies</i> , 1999 , 22, 163-167		5
111	Transverse Cylindrical Microdomain Orientation in an LC Diblock Copolymer under Oscillatory Shear. <i>Macromolecules</i> , 1999 , 32, 7703-7706	5.5	54
110	Block copolymers as additives: a route to enhanced resist performance 1999,		3
109	Diffusion and Distribution of Photoacid Generators in thin Polymer Films. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 584, 155		
108	Diffusion and Distribution Studies of Photoacid Generators. Ion Beam Analysis in Lithograpy Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 1999, 12, 457-467	0.7	18
107	Structure Development in Side Group Liquid Crystalline Diblock Copolymers 1999 , 9-28		1
106	Controlled-Order Thermosets for Electronic Packaging 1999 , 283-287		
105	Synthesis and Characterization of Thermally Degradable Polymer Networks. <i>Chemistry of Materials</i> , 1998 , 10, 3833-3838	9.6	96
104	Synthesis and Surface Energy Measurement of Semi-Fluorinated, Low-Energy Surfaces Macromolecules, 1998, 31, 4272-4276	5.5	32
103	Smectic networks obtained from twin LC epoxy monomers the chanical deformation of the smectic networks. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 1998 , 36, 31-38	2.6	21
102	Flow-induced structure in a thermotropic liquid crystalline polymer as studied by SANS. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1998 , 36, 3017-3023	2.6	8
101	Curvature driven relaxation of disclination loops in liquid crystals. <i>Polymer</i> , 1998 , 39, 4497-4503	3.9	7
100	Stress relaxation of a main-chain, smectic, polydomain liquid crystalline elastomer. <i>Polymer</i> , 1998 , 39, 3713-3718	3.9	83

99	Synthesis and mechanical properties of semi-flexible polymer networks. <i>Polymer Gels and Networks</i> , 1998 , 6, 291-300		3
98	Molecular Orientation and Dynamics in Ferroelectric Diblock Copolymers Monitored by FT-IR Spectroscopy. <i>Macromolecules</i> , 1998 , 31, 9008-9012	5.5	7
97	Deformation of a Polydomain, Liquid Crystalline Epoxy-Based Thermoset. <i>Macromolecules</i> , 1998 , 31, 4074-4088	5.5	146
96	Deformation of a Polydomain, Smectic Liquid Crystalline Elastomer. <i>Macromolecules</i> , 1998 , 31, 8531-85	3 <u>9</u> .5	89
95	Microphase-Stabilized Ferroelectric Liquid Crystals (MSFLC):□Bistable Switching of Ferroelectric Liquid Crystaltoil Diblock Copolymers. <i>Chemistry of Materials</i> , 1998 , 10, 1538-1545	9.6	48
94	Reworkable Epoxies: Thermosets with Thermally Cleavable Groups for Controlled Network Breakdown. <i>Chemistry of Materials</i> , 1998 , 10, 1475-1482	9.6	162
93	Copolymer approach to charge-dissipating electron-beam resists. <i>Journal of Vacuum Science</i> & <i>Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1998 , 16, 3701		4
92	Twin nematic phenylbenzoates in a.c. electric fields. <i>Liquid Crystals</i> , 1998 , 25, 199-206	2.3	2
91	Ferroelectric block copolymers. <i>Macromolecular Symposia</i> , 1997 , 117, 175-179	0.8	8
90	Order within order: Studies of semifluorinated block copolymers. <i>Macromolecular Symposia</i> , 1997 , 118, 701-706	0.8	2
89	Mixtures of Liquid-Crystalline and Amorphous Dicyanates: Unusual Curing Behavior and Mechanical Properties. <i>Chemistry of Materials</i> , 1997 , 9, 1588-1597	9.6	3
88	Orientation of Liquid Crystalline Epoxides under ac Electric Fields. <i>Macromolecules</i> , 1997 , 30, 4278-4287	7 5.5	63
87	Self-Organizing Materials with Low Surface Energy: The Synthesis and Solid-State Properties of Semifluorinated Side-Chain Ionenes. <i>Macromolecules</i> , 1997 , 30, 7560-7567	5.5	99
86	Effect of the Monomer Ratio on the Strengthening of Polymer Phase Boundaries by Random Copolymers. <i>Macromolecules</i> , 1997 , 30, 6727-6736	5.5	28
85	Multiple length scale self-organization in liquid crystalline block copolymers. <i>Macromolecular Symposia</i> , 1997 , 117, 141-152	0.8	6
84	Influence of a liquid crystalline block on the microdomain structure of block copolymers. Macromolecular Symposia, 1997, 117, 241-256	0.8	29
83	Molecular Design, Synthesis, and Characterization of Liquid Crystal@oil Diblock Copolymers with Azobenzene Side Groups. <i>Macromolecules</i> , 1997 , 30, 2556-2567	5.5	209
82	Liquid Crystalline, Semifluorinated Side Group Block Copolymers with Stable Low Energy Surfaces: Synthesis, Liquid Crystalline Structure, and Critical Surface Tension. <i>Macromolecules</i> , 1997 , 30, 1906-19	14 ^{5.5}	291

81	High Refractive Index Polymers for Optical Applications. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1997 , 34, 573-586	2.2	17
80	Amplification by optical composites. <i>Optics Letters</i> , 1997 , 22, 1247-9	3	69
79	Rigid rod and liquid crystalline thermosets. <i>Progress in Polymer Science</i> , 1997 , 22, 975-1000	29.6	100
78	Nanocomposite Materials for Optical Applications. <i>Chemistry of Materials</i> , 1997 , 9, 1302-1317	9.6	888
77	Competing Interactions and Levels of Ordering in Self-Organizing Polymeric Materials. <i>Science</i> , 1997 , 277, 1225-1232	33.3	643
76	Smectic rheology. <i>Rheologica Acta</i> , 1997 , 36, 498-504	2.3	50
75	Analysis of smectic structure formation in liquid crystalline thermosets. <i>Polymer</i> , 1997 , 38, 5857-5867	3.9	40
74	PolyelectrolyteBurfactant Complexes in the Solid State: Facile building blocks for self-organizing materials. <i>Advanced Materials</i> , 1997 , 9, 17-31	24	233
73	Imaging polymers with supercritical carbon dioxide. Advanced Materials, 1997, 9, 1039-1043	24	29
72	Block copolymers containing liquid crystalline segments. <i>Acta Polymerica</i> , 1997 , 48, 405-422		89
71	Liquid crystalline networks from 1,4-benzenedicarboxylic acid bis(4-cyanatomethylphenyl) ester. <i>Macromolecular Chemistry and Physics</i> , 1997 , 198, 2957-2970	2.6	9
70	Covalently Linked, Transparent Silica B oly(imide) Hybrids. <i>Polymers for Advanced Technologies</i> , 1997 , 8, 289-296	3.2	31
69	Translational Diffusion in Polydisperse Polymer Samples Studied by Dynamic Imaging of Diffusion ESR. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 15856-15866		13
68	Molecular Dynamics of a Liquid Crystalline Polymer Studied by Two-Dimensional Fourier Transform and CW ESR. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 15873-15885		32
67	Structural Characterization of Biphenyl Ester-Based LC Molecules: Peculiarities of Cyclic Siloxane-Based Materials. <i>Macromolecules</i> , 1996 , 29, 8717-8725	5.5	7
66	Molecular Association in Nematic Phases of Cyclic Liquid Crystal Oligomers. <i>Macromolecules</i> , 1996 , 29, 8706-8716	5.5	9
65	Group-Transfer Polymerization of tert-Butyl Methacrylate and [3-(Methacryloxy)propyl]pentamethyldisiloxane: Synthesis and Characterization of Homopolymers and Random and Block Copolymers. <i>Chemistry of Materials</i> , 1996 , 8, 2272-2281	9.6	8
64	Lithographic Properties of Poly(tert-butyl methacrylate)-Based Block and Random Copolymer Resists Designed for 193 nm Wavelength Exposure Tools. <i>Chemistry of Materials</i> , 1996 , 8, 2282-2290	9.6	26

[1995-1996]

63	Surface Segregation Studies of Fluorine-Containing Diblock Copolymers Macromolecules, 1996 , 29, 1229-1234	5.5	217
62	Formation of Transparent Silica P olymer Hybrids Based on Siloxane-Containing Polyimides. <i>ACS Symposium Series</i> , 1996 , 392-402	0.4	1
61	Rotational Diffusion and Order Parameters of a Liquid Crystalline Polymer Studied by ESR: Molecular Weight Dependence. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 15867-15872		15
60	Orientation-On-Demand Thin Films: Curing of Liquid Crystalline Networks in ac Electric Fields. <i>Science</i> , 1996 , 272, 252-255	33.3	60
59	The Processing of LC Thermosets in Orienting External Fields. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 425, 149		2
58	Supercritical fluid processing: opportunities for new resist materials and processes 1996,		2
57	Block and random copolymer resists designed for 193-nm lithography and environmentally friendly supercritical CO 2 development 1996 , 2724, 410		2
56	Block Copolymers as Lithographic Materials <i>Journal of Photopolymer Science and Technology =</i> [Fotoporima Konwakai Shi], 1996 , 9, 1-11	0.7	5
55	Self-Assembled Smectic Phases in Rod-Coil Block Copolymers. <i>Science</i> , 1996 , 273, 343-6	33.3	385
54	Synthesis and curing of novel LC twin epoxy monomers for liquid crystal thermosets. <i>Journal of Polymer Science Part A</i> , 1996 , 34, 1291-1303	2.5	69
53	The curing of dicyanate ester liquid crystalline thermosets. <i>Angewandte Makromolekulare Chemie</i> , 1996 , 240, 59-66		1
52	Synthesis and curing of novel LC twin epoxy monomers for liquid crystal thermosets 1996 , 34, 1291		1
51	Nematic-smectic biphase of a main-chain liquid crystalline polyether. <i>Journal of Materials Science</i> , 1995 , 30, 2023-2028	4.3	2
50	Thermotropic liquid crystalline polymers with low thermal transitions. II. Low melting thermotropic liquid crystalline homo- and co-polyesters. <i>Journal of Polymer Science Part A</i> , 1995 , 33, 1913-1916	2.5	5
49	Block copolymers with low surface energy segments: siloxane- and perfluoroalkane-modified blocks. <i>Polymer</i> , 1995 , 36, 1321-1325	3.9	49
48	Dai et al. Reply. <i>Physical Review Letters</i> , 1995 , 74, 2837	7.4	7
47	The effect of electric and magnetic fields on the melt organization of a nematic cyclic siloxane liquid crystal. <i>Liquid Crystals</i> , 1995 , 18, 787-794	2.3	10
46	Zigzag Morphology of a Poly(styrene-b-hexyl isocyanate) Rod-Coil Block Copolymer. <i>Macromolecules</i> , 1995 , 28, 1688-1697	5.5	192

45	Silicon-Containing Block Copolymer Resist Materials. ACS Symposium Series, 1995, 281-298	0.4	8
44	Novel ceramic particle synthesis for optical applications: Dispersion polymerized preceramic polymers as size templates for fine ceramic powders. <i>Advanced Materials</i> , 1995 , 7, 1009-1012	24	27
43	Probing the electric field alignment of a thermotropic liquid crystalline polymer by synchrotron radiation. <i>Liquid Crystals</i> , 1994 , 17, 179-190	2.3	17
42	Reinforcement of polymer interfaces with random copolymers. <i>Physical Review Letters</i> , 1994 , 73, 2472-	2 /1 .745	128
41	Crystallization of Precursors to Forsterite and Chromium-Doped Forsterite. <i>Journal of the American Ceramic Society</i> , 1994 , 77, 33-40	3.8	7
40	Synthesis and Lithographic Characterization of Block Copolymer Resists Consisting of Both Poly(styrene) Blocks and Hydrosiloxane-Modified Poly(diene) Blocks. <i>Chemistry of Materials</i> , 1994 , 6, 927-934	9.6	27
39	Viscoelastic properties of a model main-chain liquid crystalline polyether. <i>Journal of Rheology</i> , 1994 , 38, 1623-1638	4.1	44
38	Linear viscoelasticity of side chain liquid crystal polymer. <i>Liquid Crystals</i> , 1993 , 13, 233-245	2.3	51
37	The temperature dependence of nematic liquid crystalline polymer melt diffusion. <i>Liquid Crystals</i> , 1993 , 14, 1351-1358	2.3	7
36	Development of Poly(Phenylene)-Based Materials for Thin Film Applications: Optical Waveguides and Low Dielectric Materials. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1993 , 30, 877-897	2.2	9
35	Diffusion and melt viscosity of a main-chain liquid crystalline polyether. <i>Macromolecules</i> , 1993 , 26, 3764	I- <u>3</u> .7571	26
34	An investigation of the smectic-isotropic transition in a side-chain liquid crystal polymer by synchrotron radiation x-ray diffraction. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1993 , 31, 773	3- 7 97	10
33	Liquid crystalline and rigid-rod networks. <i>Progress in Polymer Science</i> , 1993 , 18, 899-945	29.6	137
32	Synthesis of Novel Fluorinated [sgrave]-Conjugated Silicon-Containing Polymers: Polysilynes and Polysilanes. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1992 , 29, 787-800	2.2	5
31	Rigid-rod thermosets based on 1,3,5-triazine-linked aromatic ester segments. <i>Macromolecules</i> , 1992 , 25, 2947-2954	5.5	71
30	Liquid crystalline epoxy thermosets based on dihydroxymethylstilbene: Synthesis and characterization. <i>Journal of Polymer Science Part A</i> , 1992 , 30, 1831-1843	2.5	96
29	The mechanical and magnetic alignment of liquid crystalline epoxy thermosets. <i>Journal of Polymer Science Part A</i> , 1992 , 30, 1845-1853	2.5	85
28	New liquid crystal polyethers and polyesters based on diphenylbutadiene mesogens. <i>Journal of Polymer Science Part A</i> , 1992 , 30, 2541-2547	2.5	3

27	Acid-catalyzed photoaromatization of poly(cyclohexadiene-1,2-diol) derivatives into polyphenylene. <i>Polymer Bulletin</i> , 1992 , 28, 33-40	2.4	8
26	Poly(methacrylate) Precursors to Forsterite. <i>Journal of the American Ceramic Society</i> , 1992 , 75, 1831-18	83§ .8	22
25	Dynamic x-ray diffraction studies of liquid-crystalline polyesters. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1990 , 28, 1047-1062	2.6	9
24	New thermotropic polyesters from distyrylbenzene bisphenols. <i>Journal of Polymer Science, Part C: Polymer Letters</i> , 1990 , 28, 331-339		6
23	Liquid crystal copolyethers with mixed mesogenic units and flexible spacers. <i>Polymer Bulletin</i> , 1990 , 23, 535-542	2.4	5
22	Dispersion copolymerization in non-aqueous media. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1990 , 35-36, 87-104		33
21	Studies of liquid-crystalline polymer phase transitions using synchrotron x-radiation. <i>Macromolecules</i> , 1989 , 22, 498-500	5.5	6
20	Polymer tacticity in simulated NMR spectra. <i>Journal of Chemical Education</i> , 1989 , 66, 645	2.4	3
19	Liquid crystalline polyesters by staged-addition polycondensation. <i>Polymer Bulletin</i> , 1988 , 20, 45	2.4	2
18	Synthesis and characterization of pyrene-labeled hydroxypropyl cellulose and its fluorescence in solution. <i>Macromolecules</i> , 1987 , 20, 38-44	5.5	69
17	Formation of large monodisperse copolymer particles by dispersion polymerization. <i>Macromolecules</i> , 1987 , 20, 268-273	5.5	160
16	The effect of temperature and initiator levels on the dispersion polymerization of polystyrene. <i>Journal of Polymer Science Part A</i> , 1987 , 25, 1395-1407	2.5	107
15	Coloured particles by dispersion polymerization. European Polymer Journal, 1987, 23, 617-622	5.2	18
14	Partitioning of monomer during dispersion polymerisation. <i>Colloids and Surfaces</i> , 1986 , 21, 347-354		13
13	Thermotropic liquid crystalline polyesters containing naphthalenic mesogenic groups. <i>Polymer Bulletin</i> , 1986 , 15, 233	2.4	13
12	Monodispersed, micron-sized polystyrene particles by dispersion polymerization. <i>Journal of Polymer Science, Polymer Letters Edition</i> , 1985 , 23, 103-108		166
11	Particle size control in dispersion polymerization of polystyrene. <i>Canadian Journal of Chemistry</i> , 1985 , 63, 209-216	0.9	289
10	Liquid crystal polymers, 13. A smectic aromatic polyester with triad mesogenic groups and a polymethylene spacer in the main chain. <i>Die Makromolekulare Chemie Rapid Communications</i> , 1983 , 4, 49-55		32

9	Liquid-crystalline polymers. 12. Polyesters with either alternating or random orientation of mesogenic units. <i>Macromolecules</i> , 1983 , 16, 1034-1036	5.5	38
8	Liquid Crystal Polymers. V. Thermotropic Polyesters with Either Dyad or Triad Aromatic Ester Mesogenic Units and Flexible Polymethylene Spacers in the Main Chain. <i>Polymer Journal</i> , 1982 , 14, 9-17	, 2.7	98
7	Phase transitions in alkylene glycol terephthalate copolyesters containing mesogenic p-oxybenzoate units. <i>Polymer Bulletin</i> , 1981 , 5-5, 497	2.4	2
6	Thermotropic Liquid Crystalline Polyesters with Rigid or Flexible Spacer Groups. <i>British Polymer Journal</i> , 1980 , 12, 132-146		158
5	Phase-Selective Chemistry in Block Copolymer Systems1-66		1
4	Patternable Block Copolymers183-226		113
3	Block Copolymers Containing Liquid Crystalline Segments66-92		
2	Influence of spin casting solvent on the self-assembly of silicon-containing block copolymer thin films via high temperature thermal treatment. <i>Polymer International</i> ,	3.3	1
1	Ionic Dopant-Induced Ordering Enhances the Thermoelectric Properties of a Polythiophene-Based Block Copolymer, Advanced Functional Materials 2106991	15.6	O