Christopher K Ober

List of Publications by Citations

Source: https://exaly.com/author-pdf/4217872/christopher-k-ober-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25,996 76 512 147 h-index g-index citations papers 6.84 27,632 6.7 593 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
512	Emerging applications of stimuli-responsive polymer materials. <i>Nature Materials</i> , 2010 , 9, 101-13	27	4474
511	Nanocomposite Materials for Optical Applications. <i>Chemistry of Materials</i> , 1997 , 9, 1302-1317	9.6	888
510	Advances in polymers for anti-biofouling surfaces. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3405		680
509	An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. <i>Science</i> , 2002 , 296, 1106-9	33.3	646
508	Competing Interactions and Levels of Ordering in Self-Organizing Polymeric Materials. <i>Science</i> , 1997 , 277, 1225-1232	33.3	643
507	Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives. <i>Biomacromolecules</i> , 2005 , 6, 2427-48	6.9	621
506	Attogram detection using nanoelectromechanical oscillators. <i>Journal of Applied Physics</i> , 2004 , 95, 3694	-327.93	475
505	Self-Assembled Smectic Phases in Rod-Coil Block Copolymers. <i>Science</i> , 1996 , 273, 343-6	33.3	385
504	Anti-biofouling properties of comblike block copolymers with amphiphilic side chains. <i>Langmuir</i> , 2006 , 22, 5075-86	4	312
503	Liquid Crystalline, Semifluorinated Side Group Block Copolymers with Stable Low Energy Surfaces: Synthesis, Liquid Crystalline Structure, and Critical Surface Tension. <i>Macromolecules</i> , 1997 , 30, 1906-19	14 ⁻⁵	291
502	Particle size control in dispersion polymerization of polystyrene. <i>Canadian Journal of Chemistry</i> , 1985 , 63, 209-216	0.9	289
501	50th Anniversary Perspective: Polymer Brushes: Novel Surfaces for Future Materials. <i>Macromolecules</i> , 2017 , 50, 4089-4113	5.5	265
500	Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom Navicula and the green alga Ulva. <i>Biomacromolecules</i> , 2006 , 7, 1449-62	6.9	238
499	PolyelectrolyteBurfactant Complexes in the Solid State: Facile building blocks for self-organizing materials. <i>Advanced Materials</i> , 1997 , 9, 17-31	24	233
498	Surface Segregation Studies of Fluorine-Containing Diblock Copolymers Macromolecules, 1996 , 29, 1229-1234	5.5	217
497	Molecular Design, Synthesis, and Characterization of Liquid Crystalloil Diblock Copolymers with Azobenzene Side Groups. <i>Macromolecules</i> , 1997 , 30, 2556-2567	5.5	209
496	Block copolymer patterns and templates. <i>Materials Today</i> , 2006 , 9, 30-39	21.8	196

(2008-1995)

495	Zigzag Morphology of a Poly(styrene-b-hexyl isocyanate) Rod-Coil Block Copolymer. Macromolecules, 1995 , 28, 1688-1697	5.5	192	
494	Recent progress in high resolution lithography. <i>Polymers for Advanced Technologies</i> , 2006 , 17, 94-103	3.2	191	
493	Study of the interlayer expansion mechanism and thermalfhechanical properties of surface-initiated epoxy nanocomposites. <i>Polymer</i> , 2002 , 43, 4895-4904	3.9	177	
492	Monodispersed, micron-sized polystyrene particles by dispersion polymerization. <i>Journal of Polymer Science, Polymer Letters Edition</i> , 1985 , 23, 103-108		166	
491	Reworkable Epoxies: Thermosets with Thermally Cleavable Groups for Controlled Network Breakdown. <i>Chemistry of Materials</i> , 1998 , 10, 1475-1482	9.6	162	
490	Formation of large monodisperse copolymer particles by dispersion polymerization. <i>Macromolecules</i> , 1987 , 20, 268-273	5.5	160	
489	Thermotropic Liquid Crystalline Polyesters with Rigid or Flexible Spacer Groups. <i>British Polymer Journal</i> , 1980 , 12, 132-146		158	
488	An overview of supercritical CO2 applications in microelectronics processing. <i>Microelectronic Engineering</i> , 2003 , 65, 145-152	2.5	157	
487	Orthogonal Patterning of PEDOT:PSS for Organic Electronics using Hydrofluoroether Solvents. <i>Advanced Materials</i> , 2009 , 21, 2314-2317	24	146	
486	Deformation of a Polydomain, Liquid Crystalline Epoxy-Based Thermoset. <i>Macromolecules</i> , 1998 , 31, 4074-4088	5.5	146	
485	Reversible Morphology Control in Block Copolymer Films via Solvent Vapor Processing: An In Situ GISAXS study. <i>Macromolecules</i> , 2010 , 43, 4253-4260	5.5	144	
484	Dissociation behavior of weak polyelectrolyte brushes on a planar surface. <i>Langmuir</i> , 2009 , 25, 4774-9	4	140	
483	Research in Macromolecular Science: Challenges and Opportunities for the Next Decade. <i>Macromolecules</i> , 2009 , 42, 465-471	5.5	139	
482	Liquid crystalline and rigid-rod networks. <i>Progress in Polymer Science</i> , 1993 , 18, 899-945	29.6	137	
481	Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 1724-1732	7.3	135	
480	ABC triblock surface active block copolymer with grafted ethoxylated fluoroalkyl amphiphilic side chains for marine antifouling/fouling-release applications. <i>Langmuir</i> , 2009 , 25, 12266-74	4	135	
479	Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces. <i>Biomacromolecules</i> , 2007 , 8, 3082-	-962)	131	
478	Control of self-assembly of lithographically patternable block copolymer films. ACS Nano, 2008, 2, 1396	-4627	130	

477	Hydrofluoroethers as Orthogonal Solvents for the Chemical Processing of Organic Electronic Materials. <i>Advanced Materials</i> , 2008 , 20, 3481-3484	24	128
476	Reinforcement of polymer interfaces with random copolymers. <i>Physical Review Letters</i> , 1994 , 73, 2472	-2 4 .745	128
475	Oligo(ethylene glycol) containing polymer brushes as bioselective surfaces. <i>Langmuir</i> , 2005 , 21, 2495-5	04	125
474	Extreme ultraviolet resist materials for sub-7 nm patterning. Chemical Society Reviews, 2017, 46, 4855-	48 , 865	124
473	Characterization of thermally reworkable thermosets: materials for environmentally friendly processing and reuse. <i>Polymer</i> , 2002 , 43, 131-139	3.9	124
472	Coatings based on side-chain ether-linked poly(ethylene glycol) and fluorocarbon polymers for the control of marine biofouling. <i>Biofouling</i> , 2003 , 19 Suppl, 91-8	3.3	121
471	Alignment of Self-Assembled Hierarchical Microstructure in Liquid Crystalline Diblock Copolymers Using High Magnetic Fields. <i>Macromolecules</i> , 2004 , 37, 9903-9908	5.5	117
470	Settlement of Ulva zoospores on patterned fluorinated and PEGylated monolayer surfaces. <i>Langmuir</i> , 2008 , 24, 503-10	4	116
469	Surfaces of fluorinated pyridinium block copolymers with enhanced antibacterial activity. <i>Langmuir</i> , 2006 , 22, 11255-66	4	114
468	Patternable Block Copolymers183-226		113
468 467	Patternable Block Copolymers183-226 The Orientation of Semifluorinated Alkanes Attached to Polymers at the Surface of Polymer Films. Macromolecules, 2000, 33, 1882-1887	5.5	113
	The Orientation of Semifluorinated Alkanes Attached to Polymers at the Surface of Polymer Films.	5.5	
467	The Orientation of Semifluorinated Alkanes Attached to Polymers at the Surface of Polymer Films. Macromolecules, 2000, 33, 1882-1887 The effect of temperature and initiator levels on the dispersion polymerization of polystyrene.		109
467 466	The Orientation of Semifluorinated Alkanes Attached to Polymers at the Surface of Polymer Films. Macromolecules, 2000, 33, 1882-1887 The effect of temperature and initiator levels on the dispersion polymerization of polystyrene. Journal of Polymer Science Part A, 1987, 25, 1395-1407 Semifluorinated Aromatic Side-Group Polystyrene-Based Block Copolymers: Bulk Structure and	2.5	109
467 466 465	The Orientation of Semifluorinated Alkanes Attached to Polymers at the Surface of Polymer Films. <i>Macromolecules</i> , 2000 , 33, 1882-1887 The effect of temperature and initiator levels on the dispersion polymerization of polystyrene. <i>Journal of Polymer Science Part A</i> , 1987 , 25, 1395-1407 Semifluorinated Aromatic Side-Group Polystyrene-Based Block Copolymers: Bulk Structure and Surface Orientation Studies. <i>Macromolecules</i> , 2002 , 35, 8078-8087 Release of nerve growth factor from HEMA hydrogel-coated substrates and its effect on the	2.5	109 107 105
467 466 465 464	The Orientation of Semifluorinated Alkanes Attached to Polymers at the Surface of Polymer Films. <i>Macromolecules</i> , 2000 , 33, 1882-1887 The effect of temperature and initiator levels on the dispersion polymerization of polystyrene. <i>Journal of Polymer Science Part A</i> , 1987 , 25, 1395-1407 Semifluorinated Aromatic Side-Group Polystyrene-Based Block Copolymers: Bulk Structure and Surface Orientation Studies. <i>Macromolecules</i> , 2002 , 35, 8078-8087 Release of nerve growth factor from HEMA hydrogel-coated substrates and its effect on the differentiation of neural cells. <i>Biomacromolecules</i> , 2009 , 10, 174-83 Surface Stability in Liquid-Crystalline Block Copolymers with Semifluorinated Monodendron Side	2.5 5.5 6.9	109 107 105
467 466 465 464 463	The Orientation of Semifluorinated Alkanes Attached to Polymers at the Surface of Polymer Films. <i>Macromolecules</i> , 2000, 33, 1882-1887 The effect of temperature and initiator levels on the dispersion polymerization of polystyrene. <i>Journal of Polymer Science Part A</i> , 1987, 25, 1395-1407 Semifluorinated Aromatic Side-Group Polystyrene-Based Block Copolymers: Bulk Structure and Surface Orientation Studies. <i>Macromolecules</i> , 2002, 35, 8078-8087 Release of nerve growth factor from HEMA hydrogel-coated substrates and its effect on the differentiation of neural cells. <i>Biomacromolecules</i> , 2009, 10, 174-83 Surface Stability in Liquid-Crystalline Block Copolymers with Semifluorinated Monodendron Side Groups. <i>Macromolecules</i> , 2000, 33, 6106-6119 A general approach to controlling the surface composition of poly(ethylene oxide)-based block	2.5 5.5 6.9 5.5	109 107 105 103

(1992-2003)

459	Design and application of high-sensitivity two-photon initiators for three-dimensional microfabrication. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2003 , 158, 163-170	4.7	98
458	Liquid Crystal Polymers. V. Thermotropic Polyesters with Either Dyad or Triad Aromatic Ester Mesogenic Units and Flexible Polymethylene Spacers in the Main Chain. <i>Polymer Journal</i> , 1982 , 14, 9-17	2.7	98
457	Direct three-dimensional microfabrication of hydrogels via two-photon lithography in aqueous solution. <i>Chemistry of Materials</i> , 2009 , 21, 2003-2006	9.6	96
456	Synthesis and Characterization of Thermally Degradable Polymer Networks. <i>Chemistry of Materials</i> , 1998 , 10, 3833-3838	9.6	96
455	Liquid crystalline epoxy thermosets based on dihydroxymethylstilbene: Synthesis and characterization. <i>Journal of Polymer Science Part A</i> , 1992 , 30, 1831-1843	2.5	96
454	Fluorinated amphiphilic polymers and their blends for fouling-release applications: the benefits of a triblock copolymer surface. <i>ACS Applied Materials & Description of the European Communication of the European Com</i>	9.5	95
453	Spatially Controlled Fabrication of Nanoporous Block Copolymers. <i>Chemistry of Materials</i> , 2004 , 16, 380	Og 3880	8 95
452	Additive-Driven Phase-Selective Chemistry in Block Copolymer Thin Films: The Convergence of TopDown and BottomDp Approaches. <i>Advanced Materials</i> , 2004 , 16, 953-957	24	93
451	Controlled degradation of epoxy networks: analysis of crosslink density and glass transition temperature changes in thermally reworkable thermosets. <i>Polymer</i> , 2004 , 45, 1939-1950	3.9	93
450	Orthogonal processing: A new strategy for organic electronics. <i>Chemical Science</i> , 2011 , 2, 1178	9.4	92
449	Molecular Glass Resists for High-Resolution Patterning. <i>Chemistry of Materials</i> , 2006 , 18, 3404-3411	9.6	92
448	Amphiphilic surface active triblock copolymers with mixed hydrophobic and hydrophilic side chains for tuned marine fouling-release properties. <i>Langmuir</i> , 2010 , 26, 9772-81	4	90
447	Triblock Copolymers with Grafted Fluorine-Free, Amphiphilic, Non-Ionic Side Chains for Antifouling and Fouling-Release Applications. <i>Macromolecules</i> , 2011 , 44, 4783-4792	5.5	89
446	Block copolymers containing liquid crystalline segments. <i>Acta Polymerica</i> , 1997 , 48, 405-422		89
445	Deformation of a Polydomain, Smectic Liquid Crystalline Elastomer. <i>Macromolecules</i> , 1998 , 31, 8531-85	3 9 .5	89
444	Low-Surface-Energy Fluoromethacrylate Block Copolymers with Patternable Elements. <i>Chemistry of Materials</i> , 2000 , 12, 33-40	9.6	88
443	Two-Photon Three-Dimensional Microfabrication of Poly(Dimethylsiloxane) Elastomers. <i>Chemistry of Materials</i> , 2004 , 16, 5556-5558	9.6	87
442	The mechanical and magnetic alignment of liquid crystalline epoxy thermosets. <i>Journal of Polymer Science Part A</i> , 1992 , 30, 1845-1853	2.5	85

441	Stress relaxation of a main-chain, smectic, polydomain liquid crystalline elastomer. <i>Polymer</i> , 1998 , 39, 3713-3718	3.9	83
440	Supercritical CO2 Processing for Submicron Imaging of Fluoropolymers. <i>Chemistry of Materials</i> , 2000 , 12, 41-48	9.6	81
439	Fluorine-free mixed amphiphilic polymers based on PDMS and PEG side chains for fouling release applications. <i>Biofouling</i> , 2011 , 27, 589-602	3.3	80
438	Control of surface properties using fluorinated polymer brushes produced by surface-initiated controlled radical polymerization. <i>Langmuir</i> , 2004 , 20, 10498-506	4	78
437	Protein adsorption resistance of anti-biofouling block copolymers containing amphiphilic side chains. <i>Soft Matter</i> , 2010 , 6, 3237	3.6	76
436	Temperature Dependence of Molecular Orientation on the Surfaces of Semifluorinated Polymer Thin Films. <i>Langmuir</i> , 2000 , 16, 1993-1997	4	76
435	Role of solvent dielectric properties on charge transfer from PbS nanocrystals to molecules. <i>Nano Letters</i> , 2010 , 10, 318-23	11.5	73
434	High-performance electron-transporting polymers derived from a heteroaryl bis(trifluoroborate). <i>Journal of the American Chemical Society</i> , 2011 , 133, 9949-51	16.4	72
433	Liquid Crystalline Rod © oil Block Copolymers by Stable Free Radical Polymerization: Synthesis, Morphology, and Rheology. <i>Macromolecules</i> , 2003 , 36, 3357-3364	5.5	72
432	Engineering low surface energy polymers through molecular design: synthetic routes to fluorinated polystyrene-based block copolymers. <i>Journal of Materials Chemistry</i> , 2002 , 12, 1684-1692		71
431	Rigid-rod thermosets based on 1,3,5-triazine-linked aromatic ester segments. <i>Macromolecules</i> , 1992 , 25, 2947-2954	5.5	71
430	Widely Tunable Morphologies in Block Copolymer Thin Films Through Solvent Vapor Annealing Using Mixtures of Selective Solvents. <i>Advanced Functional Materials</i> , 2015 , 25, 3057-3065	15.6	70
429	Amplification by optical composites. <i>Optics Letters</i> , 1997 , 22, 1247-9	3	69
428	Synthesis and curing of novel LC twin epoxy monomers for liquid crystal thermosets. <i>Journal of Polymer Science Part A</i> , 1996 , 34, 1291-1303	2.5	69
427	Synthesis and characterization of pyrene-labeled hydroxypropyl cellulose and its fluorescence in solution. <i>Macromolecules</i> , 1987 , 20, 38-44	5.5	69
426	Molecular glass photoresists for advanced lithography. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1693		68
425	Detection of transmitter release from single living cells using conducting polymer microelectrodes. <i>Advanced Materials</i> , 2011 , 23, H184-8	24	67
424	Sub-50 nm feature sizes using positive tone molecular glass resists for EUV lithography. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1470		66

(2009-2000)

Understanding and controlling the morphology of styreneßoprene side-group liquid crystalline diblock copolymers. <i>Polymer</i> , 2000 , 41, 8897-8907	3.9	65
Direct patterning of intrinsically electron beam sensitive polymer brushes. ACS Nano, 2010, 4, 771-80	16.7	64
Methods for the topographical patterning and patterned surface modification of hydrogels based on hydroxyethyl methacrylate. <i>Biomacromolecules</i> , 2003 , 4, 1126-31	6.9	64
Orientation of Liquid Crystalline Epoxides under ac Electric Fields. <i>Macromolecules</i> , 1997 , 30, 4278-4287	7 5.5	63
Zinc induced polyelectrolyte coacervate bioadhesive and its transition to a self-healing hydrogel. <i>RSC Advances</i> , 2015 , 5, 66871-66878	3.7	62
Electrical control of protein conformation. <i>Advanced Materials</i> , 2012 , 24, 2501-5	24	62
Acid-sensitive semiperfluoroalkyl resorcinarene: an imaging material for organic electronics. Journal of the American Chemical Society, 2008 , 130, 11564-5	16.4	62
Chemically Amplified Positive Resists for Two-Photon Three-Dimensional Microfabrication. <i>Advanced Materials</i> , 2003 , 15, 517-521	24	62
Fluorinated mesogen-jacketed liquid-crystalline polymers as surface-modifying agents: Design, synthesis and characterization. <i>Macromolecular Chemistry and Physics</i> , 2002 , 203, 1573-1583	2.6	60
Orientation-On-Demand Thin Films: Curing of Liquid Crystalline Networks in ac Electric Fields. <i>Science</i> , 1996 , 272, 252-255	33.3	60
Polymer-Based Marine Antifouling and Fouling Release Surfaces: Strategies for Synthesis and Modification. <i>Annual Review of Chemical and Biomolecular Engineering</i> , 2019 , 10, 241-264	8.9	59
Amphiphilic triblock copolymers with PEGylated hydrocarbon structures as environmentally friendly marine antifouling and fouling-release coatings. <i>Biofouling</i> , 2014 , 30, 589-604	3.3	57
Orientational Switching of Mesogens and Microdomains in Hydrogen-Bonded Side-Chain Liquid-Crystalline Block Copolymers Using AC Electric Fields. <i>Advanced Functional Materials</i> , 2004 , 14, 364-370	15.6	57
Polymer brushes for electrochemical biosensors. <i>Soft Matter</i> , 2011 , 7, 297-302	3.6	55
Selective area control of self-assembled pattern architecture using a lithographically patternable block copolymer. <i>ACS Nano</i> , 2009 , 3, 1761-6	16.7	54
Transverse Cylindrical Microdomain Orientation in an LC Diblock Copolymer under Oscillatory Shear. <i>Macromolecules</i> , 1999 , 32, 7703-7706	5.5	54
Surface organization, light-driven surface changes, and stability of semifluorinated azobenzene polymers. <i>Langmuir</i> , 2007 , 23, 5110-9	4	53
Surface engineering of styrene/PEGylated-fluoroalkyl styrene block copolymer thin films. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 267-284	2.5	52
	Direct patterning of intrinsically electron beam sensitive polymer brushes. ACS Nano, 2010, 4, 771-80 Methods for the topographical patterning and patterned surface modification of hydrogels based on hydroxyethyl methacrylate. Biomacromolecules, 2003, 4, 1126-31 Orientation of Liquid Crystalline Epoxides under ac Electric Fields. Macromolecules, 1997, 30, 4278-428: Zinc induced polyelectrolyte coacervate bioadhesive and its transition to a self-healing hydrogel. RSC Advances, 2015, 5, 66871-66878 Electrical control of protein conformation. Advanced Materials, 2012, 24, 2501-5 Acid-sensitive semiperfluoroalkyl resorcinarene: an imaging material for organic electronics. Journal of the American Chemical Society, 2008, 130, 11564-5 Chemically Amplified Positive Resists for Two-Photon Three-Dimensional Microfabrication. Advanced Materials, 2003, 15, 517-521 Fluorinated mesogen-jacketed liquid-crystalline polymers as surface-modifying agents: Design, synthesis and characterization. Macromolecular Chemistry and Physics, 2002, 203, 1573-1583 Orientation-On-Demand Thin Films: Curing of Liquid Crystalline Networks in ac Electric Fields. Science, 1996, 272, 252-255 Polymer-Based Marine Antifouling and Fouling Release Surfaces: Strategies for Synthesis and Modification. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 241-264 Amphiphilic triblock copolymers with PECylated hydrocarbon structures as environmentally friendly marine antifouling and fouling-release coatings. Biofouling, 2014, 30, 589-604 Orientational Switching of Mesogens and Microdomains in Hydrogen-Bonded Side-Chain Liquid-Crystalline Block Copolymers Using AC Electric Fields. Advanced Functional Materials, 2004, 14, 364-370 Polymer brushes for electrochemical biosensors. Soft Matter, 2011, 7, 297-302 Selective area control of self-assembled pattern architecture using a lithographically patternable block copolymer. ACS Nano, 2009, 3, 1761-6 Transverse Cylindrical Microdomain Orientation in an LC Diblock Copolymer under Oscillat	Direct patterning of intrinsically electron beam sensitive polymer brushes. ACS Nano, 2010, 4, 771-80 16,7 Methods for the topographical patterning and patterned surface modification of hydrogels based on hydroxyethyl methacrylate. Biomacromolecules, 2003, 4, 1126-31 6.9 Orientation of Liquid Crystalline Epoxides under ac Electric Fields. Macromolecules, 1997, 30, 4278-4287 5.5 Zinc induced polyelectrolyte coacervate bioadhesive and its transition to a self-healing hydrogel. RSC Advances, 2015, 5, 66871-66878 3.7 Electrical control of protein conformation. Advanced Materials, 2012, 24, 2501-5 24 Acid-sensitive semiperfluoroalkyl resorcinarene: an imaging material for organic electronics. Journal of the American Chemical Society, 2008, 130, 11564-5 Chemically Amplified Positive Resists for Two-Photon Three-Dimensional Microfabrication. Advanced Materials, 2003, 15, 517-521 Fluorinated mesogen-jacketed liquid-crystalline polymers as surface-modifying agents: Design, synthesis and characterization. Macromolecular Chemistry and Physics, 2002, 203, 1573-1583 Orientation-On-Demand Thin Films: Curing of Liquid Crystalline Networks in ac Electric Fields. Science, 1996, 272, 252-255 Polymer-Based Marine Antifouling and Fouling Release Surfaces: Strategies for Synthesis and Modification. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 241-264 Amphiphilit triblock copolymers with PEGylated hydrocarbon structures as environmentally friendly marine antifouling and fouling-release coatings. Biofouling, 2014, 30, 589-604 33 Orientational Switching of Mesogens and Microdomains in Hydrogen-Bonded Side-Chain Liquid-Crystalline Block Copolymers Using AC Electric Fields. Advanced Functional Materials, 2004, 14, 364-370 Polymer brushes for electrochemical biosensors. Soft Matter, 2011, 7, 297-302 Selective area control of self-assembled pattern architecture using a lithographically patternable block copolymer. ACS Nano, 2009, 3, 1761-6 Surface organization, light-driven surface changes, and stabilit

405	Studying the Mechanism of Hybrid Nanoparticle Photoresists: Effect of Particle Size on Photopatterning. <i>Chemistry of Materials</i> , 2015 , 27, 5027-5031	9.6	51
404	Linear viscoelasticity of side chain liquid crystal polymer. <i>Liquid Crystals</i> , 1993 , 13, 233-245	2.3	51
403	A glucose sensor via stable immobilization of the GOx enzyme on an organic transistor using a polymer brush. <i>Journal of Polymer Science Part A</i> , 2015 , 53, 372-377	2.5	50
402	High refractive index and high transparency HfO2 nanocomposites for next generation lithography. Journal of Materials Chemistry, 2010 , 20, 5186		50
401	Smectic rheology. <i>Rheologica Acta</i> , 1997 , 36, 498-504	2.3	50
400	Molecular Orientation of Single and Two-Armed Monodendron Semifluorinated Chains on Boft and Blard Burfaces Studied Using NEXAFS. <i>Macromolecules</i> , 2000 , 33, 6068-6077	5.5	50
399	Fluorinated polymers: liquid crystalline properties and applications in lithography. <i>Chemical Record</i> , 2004 , 4, 315-30	6.6	49
398	Effect of Changing Molecular End Groups on Surface Properties: Synthesis and Characterization of Poly(styrene-b-semifluorinated isoprene) Block Copolymers with I F2H End Groups. <i>Macromolecules</i> , 2000 , 33, 8012-8019	5.5	49
397	Block copolymers with low surface energy segments: siloxane- and perfluoroalkane-modified blocks. <i>Polymer</i> , 1995 , 36, 1321-1325	3.9	49
396	An Efficient Route to Mesoporous Silica Films with Perpendicular Nanochannels. <i>Advanced Materials</i> , 2008 , 20, 246-251	24	48
395	Microphase-Stabilized Ferroelectric Liquid Crystals (MSFLC): Bistable Switching of Ferroelectric Liquid Crystal Diblock Copolymers. <i>Chemistry of Materials</i> , 1998 , 10, 1538-1545	9.6	48
394	Mesogen-jacketed liquid crystalline polymers via stable free radical polymerization. <i>Macromolecular Chemistry and Physics</i> , 1999 , 200, 2338-2344	2.6	48
393	Perpendicular Orientation Control without Interfacial Treatment of RAFT-Synthesized High-IBlock Copolymer Thin Films with Sub-10 nm Features Prepared via Thermal Annealing. <i>ACS Applied Materials & Description (Materials </i>	9.5	47
392	Selectively Thermally Cleavable Fluorinated Side Chain Block Copolymers: Surface Chemistry and Surface Properties. <i>Macromolecules</i> , 2000 , 33, 1310-1320	5.5	47
391	Responsive and patterned polymer brushes. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2013 , 51, 1457-1472	2.6	46
390	A novel noria (water-wheel-like cyclic oligomer) derivative as a chemically amplified electron-beam resist material. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3588		46
389	Control and Suppression of Surface Relief Gratings in Liquid-Crystalline Perfluoroalkyl Azobenzene Polymers. <i>Advanced Functional Materials</i> , 2006 , 16, 1577-1581	15.6	46
388	Antimicrobial behavior of semifluorinated-quaternized triblock copolymers against airborne and marine microorganisms. ACS Applied Materials & Theorem 2010, 2, 703-11	9.5	45

(2016-2017)

387	Role of Backbone Chemistry and Monomer Sequence in Amphiphilic Oligopeptide- and Oligopeptoid-Functionalized PDMS- and PEO-Based Block Copolymers for Marine Antifouling and Fouling Release Coatings. <i>Macromolecules</i> , 2017 , 50, 2656-2667	5.5	44
386	Patterning of polymer brushes. A direct approach to complex, sub-surface structures. <i>Nano Letters</i> , 2010 , 10, 3873-9	11.5	44
385	Functionalized surface arrays for spatial targeting of immune cell signaling. <i>Journal of the American Chemical Society</i> , 2006 , 128, 5594-5	16.4	44
384	Rodloil block copolymers: An iterative synthetic approach via living free-radical procedures. Journal of Polymer Science Part A, 2003 , 41, 3640-3656	2.5	44
383	Viscoelastic properties of a model main-chain liquid crystalline polyether. <i>Journal of Rheology</i> , 1994 , 38, 1623-1638	4.1	44
382	Ambiguous anti-fouling surfaces: Facile synthesis by light-mediated radical polymerization. <i>Journal of Polymer Science Part A</i> , 2016 , 54, 253-262	2.5	44
381	NEXAFS Depth Profiling of Surface Segregation in Block Copolymer Thin Films. <i>Macromolecules</i> , 2010 , 43, 4733-4743	5.5	43
380	Surface Induced Tilt Propagation in Thin Films of Semifluorinated Liquid Crystalline Side Chain Block Copolymers. <i>Macromolecules</i> , 2007 , 40, 81-89	5.5	42
379	High-Resolution Patterning of Molecular Glasses Using Supercritical Carbon Dioxide. <i>Advanced Materials</i> , 2006 , 18, 442-446	24	41
378	Cellular responses to patterned poly(acrylic acid) brushes. <i>Langmuir</i> , 2011 , 27, 7016-23	4	40
378 377	Cellular responses to patterned poly(acrylic acid) brushes. <i>Langmuir</i> , 2011 , 27, 7016-23 Analysis of smectic structure formation in liquid crystalline thermosets. <i>Polymer</i> , 1997 , 38, 5857-5867	3.9	40
377	Analysis of smectic structure formation in liquid crystalline thermosets. <i>Polymer</i> , 1997 , 38, 5857-5867 Biomimetic polymer brushes containing tethered acetylcholine analogs for protein and	3.9	40
377 376	Analysis of smectic structure formation in liquid crystalline thermosets. <i>Polymer</i> , 1997 , 38, 5857-5867 Biomimetic polymer brushes containing tethered acetylcholine analogs for protein and hippocampal neuronal cell patterning. <i>Biomacromolecules</i> , 2013 , 14, 529-37	3.9	40
377 376 375	Analysis of smectic structure formation in liquid crystalline thermosets. <i>Polymer</i> , 1997 , 38, 5857-5867 Biomimetic polymer brushes containing tethered acetylcholine analogs for protein and hippocampal neuronal cell patterning. <i>Biomacromolecules</i> , 2013 , 14, 529-37 Fouling-resistant polymer brush coatings. <i>Polymer</i> , 2011 , 52, 5419-5425 Characterization of the Photoacid Diffusion Length and Reaction Kinetics in EUV Photoresists with	3.9 6.9 3.9	40 39 39
377 376 375 374	Analysis of smectic structure formation in liquid crystalline thermosets. <i>Polymer</i> , 1997 , 38, 5857-5867 Biomimetic polymer brushes containing tethered acetylcholine analogs for protein and hippocampal neuronal cell patterning. <i>Biomacromolecules</i> , 2013 , 14, 529-37 Fouling-resistant polymer brush coatings. <i>Polymer</i> , 2011 , 52, 5419-5425 Characterization of the Photoacid Diffusion Length and Reaction Kinetics in EUV Photoresists with IR Spectroscopy. <i>Macromolecules</i> , 2010 , 43, 4275-4286 Dry photolithographic patterning process for organic electronic devices using supercritical carbon	3.9 6.9 3.9	40 39 39 39
377 376 375 374 373	Analysis of smectic structure formation in liquid crystalline thermosets. <i>Polymer</i> , 1997 , 38, 5857-5867 Biomimetic polymer brushes containing tethered acetylcholine analogs for protein and hippocampal neuronal cell patterning. <i>Biomacromolecules</i> , 2013 , 14, 529-37 Fouling-resistant polymer brush coatings. <i>Polymer</i> , 2011 , 52, 5419-5425 Characterization of the Photoacid Diffusion Length and Reaction Kinetics in EUV Photoresists with IR Spectroscopy. <i>Macromolecules</i> , 2010 , 43, 4275-4286 Dry photolithographic patterning process for organic electronic devices using supercritical carbon dioxide as a solvent. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3087	3.9 6.9 3.9 5.5	40 39 39 39 39

369	Reconstruction of surfaces from mixed hydrocarbon and PEG components in water: responsive surfaces aid fouling release. <i>Biomacromolecules</i> , 2012 , 13, 1864-74	6.9	37
368	Nanoparticle photoresists from HfO2 and ZrO2 for EUV patterning. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2012 , 25, 583-586	0.7	37
367	Diazonaphthoquinone Molecular Glass Photoresists: Patterning without Chemical Amplification. <i>Chemistry of Materials</i> , 2007 , 19, 3780-3786	9.6	37
366	Semiperfluoroalkyl Polyfluorenes for Orthogonal Processing in Fluorous Solvents. <i>Macromolecules</i> , 2010 , 43, 1195-1198	5.5	36
365	Study of the Structure Properties Relationship of Phenolic Molecular Glass Resists for Next Generation Photolithography. <i>Chemistry of Materials</i> , 2008 , 20, 1606-1613	9.6	36
364	Highly Reactive 2,5-Disubstituted Styrene-Based Monomer Polymerized via Stable Free Radical Polymerization: Effect of Substitution and Liquid Crystallinity on Polymerization. <i>Macromolecules</i> , 2001 , 34, 5120-5124	5.5	36
363	Solubility studies of inorganic-organic hybrid nanoparticle photoresists with different surface functional groups. <i>Nanoscale</i> , 2016 , 8, 1338-43	7.7	35
362	Orthogonal processing and patterning enabled by highly fluorinated light-emitting polymers. <i>Advanced Materials</i> , 2011 , 23, 735-9	24	35
361	Enzymatic surface-initiated polymerization: a novel approach for the in situ solid-phase synthesis of biocompatible polymer poly(3-hydroxybutyrate). <i>Biomacromolecules</i> , 2004 , 5, 889-94	6.9	35
360	Synthesis, Characterization, and Redox Reactivity of Novel Quinone-Containing Polymer. <i>Chemistry of Materials</i> , 2001 , 13, 2928-2932	9.6	35
359	Preventing nonspecific adsorption on polymer brush covered gold electrodes using a modified ATRP initiator. <i>Biomacromolecules</i> , 2009 , 10, 2750-8	6.9	34
358	Non-ionic photo-acid generators for applications in two-photon lithography. <i>Journal of Materials Chemistry</i> , 2009 , 19, 505-513		34
357	Heat capacity measurements of two-dimensional self-assembled hexadecanethiol monolayers on polycrystalline gold. <i>Applied Physics Letters</i> , 2004 , 84, 5198-5200	3.4	34
356	Solid state crystalline and liquid crystalline structure of semifluorinated 1-bromoalkane compounds. <i>Liquid Crystals</i> , 1999 , 26, 637-648	2.3	34
355	Metal Oxide Nanoparticle Photoresists for EUV Patterning. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2014 , 27, 663-666	0.7	33
354	Improved antifouling properties of polymer membranes using a 'layer-by-layer' mediated method. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 5651-5658	7.3	33
353	Three-dimensionally-patterned submicrometer-scale hydrogel/air networks that offer a new platform for biomedical applications. <i>Nano Letters</i> , 2008 , 8, 1456-60	11.5	33
352	Supramolecular Microphase Separation in a Hydrogen-Bonded Liquid Crystalline Comb Copolymer in the Melt State. <i>Macromolecules</i> , 2006 , 39, 3114-3117	5.5	33

(2012-2000)

351	Photochromism of 4-cyanophenylazobenzene in liquid crystalline-coil AB diblock copolymers: the influence of microstructure. <i>Macromolecular Rapid Communications</i> , 2000 , 21, 1309-1312	4.8	33	
350	Shape persistence of synthetic polymers. <i>Science</i> , 2000 , 288, 448-9	33.3	33	
349	Dispersion copolymerization in non-aqueous media. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1990 , 35-36, 87-104		33	
348	Impact of the Synthesis Method on the Solid-State Charge Transport of Radical Polymers. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 111-118	7.1	33	
347	Flexible Hydrophobic Antifouling Coating with Oriented Nanotopography and Nonleaking Capsaicin. ACS Applied Materials & amp; Interfaces, 2018, 10, 9718-9726	9.5	32	
346	Fibronectin conformation regulates the proangiogenic capability of tumor-associated adipogenic stromal cells. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2013 , 1830, 4314-20	4	32	
345	New poly(dimethylsiloxane)/poly(perfluorooctylethyl acrylate) block copolymers: structure and order across multiple length scales in thin films. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15357		32	
344	Molecular Dynamics of a Liquid Crystalline Polymer Studied by Two-Dimensional Fourier Transform and CW ESR. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 15873-15885		32	
343	Synthesis and Surface Energy Measurement of Semi-Fluorinated, Low-Energy Surfaces Macromolecules, 1998 , 31, 4272-4276	5.5	32	
342	Arylonium Photoacid Generators Containing Environmentally Compatible Aryloxyperfluoroalkanesulfonate Groups. <i>Chemistry of Materials</i> , 2007 , 19, 1434-1444	9.6	32	
341	Patterning of Polymeric Hydrogels for Biomedical Applications. <i>Macromolecular Rapid Communications</i> , 2001 , 22, 1284	4.8	32	
340	Liquid crystal polymers, 13. A smectic aromatic polyester with triad mesogenic groups and a polymethylene spacer in the main chain. <i>Die Makromolekulare Chemie Rapid Communications</i> , 1983 , 4, 49-55		32	
339	Dual Mode Patterning of Fluorine-Containing Block Copolymers through Combined Top-down and Bottom-up Lithography. <i>Chemistry of Materials</i> , 2012 , 24, 1454-1461	9.6	31	
338	Covalently Linked, Transparent Silica B oly(imide) Hybrids. <i>Polymers for Advanced Technologies</i> , 1997 , 8, 289-296	3.2	31	
337	Towards all-dry lithography: Electron-beam patternable poly(glycidyl methacrylate) thin films from hot filament chemical vapor deposition. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2004 , 22, 2473		31	
336	The Role of Hydrogen Bonding in Peptoid-Based Marine Antifouling Coatings. <i>Macromolecules</i> , 2019 , 52, 1287-1295	5.5	30	
335	Nanoparticle Photoresists: Ligand Exchange as a New, Sensitive EUV Patterning Mechanism. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 659-664	0.7	30	
334	A brief guide to polymer nomenclature (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2012 , 84, 2167-2169	2.1	30	

333	Ultrafast Self-Assembly of Sub-10 nm Block Copolymer Nanostructures by Solvent-Free High-Temperature Laser Annealing. <i>ACS Applied Materials & Discrete Amplied & D</i>	9.5	29
332	Metal D rganic Framework-Inspired Metal-Containing Clusters for High-Resolution Patterning. <i>Chemistry of Materials</i> , 2018 , 30, 4124-4133	9.6	29
331	Influence of a liquid crystalline block on the microdomain structure of block copolymers. <i>Macromolecular Symposia</i> , 1997 , 117, 241-256	0.8	29
330	Imaging polymers with supercritical carbon dioxide. <i>Advanced Materials</i> , 1997 , 9, 1039-1043	24	29
329	Lithography Based on Molecular Glasses. <i>Journal of Photopolymer Science and Technology =</i> [Fotoporima Konwakai Shi], 2005 , 18, 431-434	0.7	29
328	Microdeformation of a polydomain, smectic liquid crystalline thermoset. <i>Journal of Materials Science</i> , 2000 , 35, 2079-2086	4.3	29
327	Effect of the Monomer Ratio on the Strengthening of Polymer Phase Boundaries by Random Copolymers. <i>Macromolecules</i> , 1997 , 30, 6727-6736	5.5	28
326	Structural Studies of Extension-Induced Mesophase Formation in Poly(diethylsiloxane) Elastomers: In Situ Synchrotron WAXS and SAXS. <i>Macromolecules</i> , 2003 , 36, 1975-1981	5.5	28
325	New Strategies for High Resolution Photoresists <i>Journal of Photopolymer Science and Technology =</i> [Fotoporima Konwakai Shi], 2002 , 15, 603-611	0.7	28
324	Engineered nanomaterials and human health: Part 1. Preparation, functionalization and characterization (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2018 , 90, 1283-1324	2.1	27
323	Generalized platform for antibody detection using the antibody catalyzed water oxidation pathway. <i>Journal of the American Chemical Society</i> , 2014 , 136, 1879-83	16.4	27
322	The role of hydrogels with tethered acetylcholine functionality on the adhesion and viability of hippocampal neurons and glial cells. <i>Biomaterials</i> , 2012 , 33, 2473-81	15.6	27
321	Synthesis and Lithographic Characterization of Block Copolymer Resists Consisting of Both Poly(styrene) Blocks and Hydrosiloxane-Modified Poly(diene) Blocks. <i>Chemistry of Materials</i> , 1994 , 6, 927-934	9.6	27
320	Novel ceramic particle synthesis for optical applications: Dispersion polymerized preceramic polymers as size templates for fine ceramic powders. <i>Advanced Materials</i> , 1995 , 7, 1009-1012	24	27
319	Aqueous one-pot synthesis of epoxy-functional diblock copolymer worms from a single monomer: new anisotropic scaffolds for potential charge storage applications. <i>Polymer Chemistry</i> , 2019 , 10, 194-2	.0 6 .9	26
318	Manipulation of cell adhesion and dynamics using RGD functionalized polymers. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 6307-6316	7.3	26
317	Organic field-effect transistors and solar cells using novel high electron-affinity conjugated copolymers based on alkylbenzotriazole and benzothiadiazole. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4436		26
316	Development of an inorganic photoresist for DUV, EUV, and electron beam imaging 2010 ,		26

315	Photoprocessable Polymer Opals. <i>Chemistry of Materials</i> , 2004 , 16, 5286-5292	9.6	26
314	Functional Hydrogel Surfaces: Binding Kinesin-Based Molecular Motor Proteins to Selected Patterned Sites. <i>Advanced Functional Materials</i> , 2005 , 15, 1303-1309	15.6	26
313	Lithographic Properties of Poly(tert-butyl methacrylate)-Based Block and Random Copolymer Resists Designed for 193 nm Wavelength Exposure Tools. <i>Chemistry of Materials</i> , 1996 , 8, 2282-2290	9.6	26
312	Diffusion and melt viscosity of a main-chain liquid crystalline polyether. <i>Macromolecules</i> , 1993 , 26, 3764	-3.571	26
311	Biologically Complex Planar Cell Plasma Membranes Supported on Polyelectrolyte Cushions Enhance Transmembrane Protein Mobility and Retain Native Orientation. <i>Langmuir</i> , 2018 , 34, 1061-107	2 ⁴	25
310	Kinetic rates of thermal transformations and diffusion in polymer systems measured during sub-millisecond laser-induced heating. <i>ACS Nano</i> , 2012 , 6, 5830-6	16.7	25
309	Development of an inorganic nanoparticle photoresist for EUV, e-beam, and 193nm lithography 2011 ,		25
308	Cross-linkable molecular glasses: low dielectric constant materials patternable in hydrofluoroethers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2009 , 1, 2363-70	9.5	25
307	Environmentally friendly patterning of molecular waterwheel (Noria) in supercritical carbon dioxide. <i>Journal of Materials Chemistry</i> , 2009 , 19, 4622		25
306	Positive-Tone Photoresist Process for Supercritical Carbon Dioxide Development. <i>Chemistry of Materials</i> , 2003 , 15, 4893-4895	9.6	25
305	Tailoring Transparency of Imageable Fluoropolymers at 157 nm by Incorporation of Hexafluoroisopropyl Alcohol to Photoresist Backbones. <i>Chemistry of Materials</i> , 2002 , 14, 1306-1313	9.6	25
304	Periodic Surface Topology of Three-Arm Semifluorinated Alkane Monodendron Diblock Copolymers. <i>Langmuir</i> , 2001 , 17, 4342-4346	4	25
303	Model Amphiphilic Block Copolymers with Tailored Molecular Weight and Composition in PDMS-Based Films to Limit Soft Biofouling. <i>ACS Applied Materials & Discourt Amplied Materials & Discourt & Di</i>	∂ ·5	24
302	Preparation and characterization of amphiphilic triblock terpolymer-based nanofibers as antifouling biomaterials. <i>Biomacromolecules</i> , 2012 , 13, 1606-14	6.9	24
301	Direct synthesis of quaternized polymer brushes and their application for guiding neuronal growth. <i>Biomacromolecules</i> , 2010 , 11, 2027-32	6.9	24
300	A new inorganic EUV resist with high-etch resistance 2012 ,		24
299	Amphiphilic oligopeptides grafted to PDMS-based diblock copolymers for use in antifouling and fouling release coatings. <i>Polymers for Advanced Technologies</i> , 2015 , 26, 829-836	3.2	23
298	Orthogonal Processing: A Novel Photolithographic Patterning Method for Organic Electronics. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 565-569	0.7	23

297	Absorbance measurement of polymers at extreme ultraviolet wavelength: Correlation between experimental and theoretical calculations. <i>Journal of Vacuum Science & Technology B</i> , 2006 , 24, 1822		23
296	Laser-induced sub-millisecond heating reveals distinct tertiary ester cleavage reaction pathways in a photolithographic resist polymer. <i>ACS Nano</i> , 2014 , 8, 5746-56	16.7	22
295	Phenolic molecular glasses as resists for next-generation lithography 2007 , 6519, 1291		22
294	Poly(methacrylate) Precursors to Forsterite. <i>Journal of the American Ceramic Society</i> , 1992 , 75, 1831-18	8 3§ .8	22
293	Charge Transport in Conjugated Polymers with Pendent Stable Radical Groups. <i>Chemistry of Materials</i> , 2018 , 30, 4799-4807	9.6	21
292	Smectic networks obtained from twin LC epoxy monomersthechanical deformation of the smectic networks. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1998 , 36, 31-38	2.6	21
291	A Fundamental Study on Dissolution Behavior of High-Resolution Molecular Glass Photoresists. <i>Chemistry of Materials</i> , 2008 , 20, 7292-7300	9.6	21
290	Lithographic Applications of Redox Probe Microscopy. <i>Langmuir</i> , 2001 , 17, 5932-5938	4	21
289	E-Beam Patterning of Hot-Filament CVD Fluorocarbon Films Using Supercritical CO2 as a Developer. <i>Chemical Vapor Deposition</i> , 2001 , 7, 195		21
288	Photoinduced ordering of block copolymers. <i>Nano Letters</i> , 2011 , 11, 1153-60	11.5	20
		11.5	
287	Low Surface Energy Characteristics of Mesophase-Forming ABC and ACB Triblock Copolymers with Fluorinated B Blocks. <i>Molecular Crystals and Liquid Crystals</i> , 2005 , 441, 211-226	0.5	20
287	Low Surface Energy Characteristics of Mesophase-Forming ABC and ACB Triblock Copolymers with		
-	Low Surface Energy Characteristics of Mesophase-Forming ABC and ACB Triblock Copolymers with Fluorinated B Blocks. <i>Molecular Crystals and Liquid Crystals</i> , 2005 , 441, 211-226	0.5	20
286	Low Surface Energy Characteristics of Mesophase-Forming ABC and ACB Triblock Copolymers with Fluorinated B Blocks. <i>Molecular Crystals and Liquid Crystals</i> , 2005 , 441, 211-226 Defect-mediated creep of structured materials. <i>Europhysics Letters</i> , 2001 , 54, 269-274 Kinetics of Block Copolymer Phase Segregation during Sub-millisecond Transient Thermal	0.5 1.6 5.5	20
286	Low Surface Energy Characteristics of Mesophase-Forming ABC and ACB Triblock Copolymers with Fluorinated B Blocks. <i>Molecular Crystals and Liquid Crystals</i> , 2005 , 441, 211-226 Defect-mediated creep of structured materials. <i>Europhysics Letters</i> , 2001 , 54, 269-274 Kinetics of Block Copolymer Phase Segregation during Sub-millisecond Transient Thermal Annealing. <i>Macromolecules</i> , 2016 , 49, 6462-6470 A Glucose Sensor Based on an Organic Electrochemical Transistor Structure Using a Vapor	0.5 1.6 5.5	20 20 19
286 285 284	Low Surface Energy Characteristics of Mesophase-Forming ABC and ACB Triblock Copolymers with Fluorinated B Blocks. <i>Molecular Crystals and Liquid Crystals</i> , 2005 , 441, 211-226 Defect-mediated creep of structured materials. <i>Europhysics Letters</i> , 2001 , 54, 269-274 Kinetics of Block Copolymer Phase Segregation during Sub-millisecond Transient Thermal Annealing. <i>Macromolecules</i> , 2016 , 49, 6462-6470 A Glucose Sensor Based on an Organic Electrochemical Transistor Structure Using a Vapor Polymerized Poly(3,4-ethylenedioxythiophene) Layer. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 01 Hydroxyphenylbenzene derivatives as glass forming molecules for high resolution photoresists.	0.5 1.6 5.5	20 20 19
286 285 284 283	Low Surface Energy Characteristics of Mesophase-Forming ABC and ACB Triblock Copolymers with Fluorinated B Blocks. <i>Molecular Crystals and Liquid Crystals</i> , 2005 , 441, 211-226 Defect-mediated creep of structured materials. <i>Europhysics Letters</i> , 2001 , 54, 269-274 Kinetics of Block Copolymer Phase Segregation during Sub-millisecond Transient Thermal Annealing. <i>Macromolecules</i> , 2016 , 49, 6462-6470 A Glucose Sensor Based on an Organic Electrochemical Transistor Structure Using a Vapor Polymerized Poly(3,4-ethylenedioxythiophene) Layer. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 01 Hydroxyphenylbenzene derivatives as glass forming molecules for high resolution photoresists. <i>Journal of Materials Chemistry</i> , 2008 , 18, 1903 Simple Fabrication of Micropatterned Mesoporous Silica Films Using Photoacid Generators in Block	0.5 1.6 5.5 AÉ10	20 20 19 19

(2010-2011)

279	Properties of PVA/HfO2 Hybrid Electrospun Fibers and Calcined Inorganic HfO2 Fibers. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 5535-5544	3.8	18
278	Physical Vapor Deposition of Molecular Glass Photoresists: A New Route to Chemically Amplified Patterning. <i>Advanced Functional Materials</i> , 2007 , 17, 2336-2342	15.6	18
277	Diffusion and Distribution Studies of Photoacid Generators. Ion Beam Analysis in Lithograpy Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 1999 , 12, 457-467	0.7	18
276	Coloured particles by dispersion polymerization. <i>European Polymer Journal</i> , 1987 , 23, 617-622	5.2	18
275	Structure Control of a EConjugated Oligothiophene-Based Liquid Crystal for Enhanced Mixed Ion/Electron Transport Characteristics. <i>ACS Nano</i> , 2019 , 13, 7665-7675	16.7	17
274	Mini Monomer Encapsulated Emulsion Polymerization of PMMA Using Aqueous ARGET ATRP. <i>ACS Macro Letters</i> , 2018 , 7, 459-463	6.6	17
273	Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2018 , 90, 1325-1356	2.1	17
272	Terminology for aggregation and self-assembly in polymer science (IUPAC Recommendations 2013). <i>Pure and Applied Chemistry</i> , 2012 , 85, 463-492	2.1	17
271	Fabrication of polymer-based electronic circuits using photolithography. <i>Applied Physics Letters</i> , 2011 , 99, 183308	3.4	17
270	High Refractive Index Polymers for Optical Applications. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1997 , 34, 573-586	2.2	17
269	Positive- and Negative-Tone CVD Polyacrylic Electron-Beam Resists Developable by Supercritical CO2. <i>Chemical Vapor Deposition</i> , 2006 , 12, 259-262		17
268	Swelling and dissolution rate measurements of polymer thin films in supercritical carbon dioxide. <i>Journal of Supercritical Fluids</i> , 2004 , 31, 323-328	4.2	17
267	Probing the electric field alignment of a thermotropic liquid crystalline polymer by synchrotron radiation. <i>Liquid Crystals</i> , 1994 , 17, 179-190	2.3	17
266	The solvent problem: Redissolution of macromolecules in solution-processed organic electronics. <i>Macromolecular Research</i> , 2013 , 21, 248-256	1.9	16
265	Characterization of Polymer Brush Membranes via HF Etch Liftoff Technique <i>ACS Macro Letters</i> , 2013 , 2, 241-245	6.6	16
264	Orthogonal patterning of multiple biomolecules using an organic fluorinated resist and imprint lithography. <i>Biomacromolecules</i> , 2013 , 14, 993-1002	6.9	16
263	Oxide nanoparticle EUV resists: toward understanding the mechanism of positive and negative tone patterning 2013 ,		16
262	Surface structures of an amphiphilic tri-block copolymer in air and in water probed using sum frequency generation vibrational spectroscopy. <i>Langmuir</i> , 2010 , 26, 11337-43	4	16

261	Acid-diffusion behaviour in organic thin films and its effect on patterning. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2986		16
260	Molecular templates for bio-specific recognition by low-energy electron beam lithography. <i>Nanobiotechnology</i> , 2005 , 1, 023-034		16
259	Micrometer-Scale Ordering of Silicon-Containing Block Copolymer Thin Films via High-Temperature Thermal Treatments. <i>ACS Applied Materials & Discrete States</i> , 2016, 8, 9897-908	9.5	16
258	Oxide Nanoparticle EUV (ONE) Photoresists: Current Understanding of the Unusual Patterning Mechanism. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2015 , 28, 51	5-§ 1 78	15
257	Synthesis, molecular, and morphological characterization of initial and modified diblock copolymers with organic acid chloride derivatives. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 4292-4305	2.5	15
256	Architectural Effects on Acid Reaction-Diffusion Kinetics in Molecular Glass Photoresists. <i>Chemistry of Materials</i> , 2010 , 22, 3093-3098	9.6	15
255	Towards environmentally friendly, dry deposited, water developable molecular glass photoresists. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 1257-62	3.6	15
254	Dissolution phenomena of phenolic molecular glass photoresist films in supercritical CO2. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4598		15
253	Materials for future lithography (Invited Paper) 2005 , 5753, 1		15
252	Rejuvenation of 248nm Resist Backbones for 157nm Lithography <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2001 , 14, 613-620	0.7	15
251	Fundamental Studies of Fluoropolymer Photoresists for 157 nm Lithography <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2000 , 13, 451-458	0.7	15
250	Rotational Diffusion and Order Parameters of a Liquid Crystalline Polymer Studied by ESR: Molecular Weight Dependence. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 15867-15872		15
249	Self-Assembly Behavior of an Oligothiophene-Based Conjugated Liquid Crystal and Its Implication for Ionic Conductivity Characteristics. <i>Advanced Functional Materials</i> , 2019 , 29, 1805220	15.6	15
248	Design, Synthesis, and Use of Y-Shaped ATRP/NMP Surface Tethered Initiator. <i>ACS Macro Letters</i> , 2015 , 4, 606-610	6.6	14
247	Photo-cleavable anti-fouling polymer brushes: A simple and versatile platform for multicomponent protein patterning. <i>Polymer</i> , 2013 , 54, 1762-1767	3.9	14
246	Combinatorial optimization of a molecular glass photoresist system for electron beam lithography. <i>Advanced Materials</i> , 2011 , 23, 5404-8	24	14
245	Solid state NMR investigation of photoresist molecular glasses including blend behavior with a photoacid generator. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2683		14
244	Real-time analysis of enzymatic surface-initiated polymerization using surface plasmon resonance (SPR). <i>Macromolecular Bioscience</i> , 2006 , 6, 145-52	5.5	14

243	Dinitrophenyl ligand substrates and their application to immunosensors. <i>Biosensors and Bioelectronics</i> , 2006 , 22, 63-70	11.8	14
242	Preparation and Two-Photon Lithography of a Sulfur Containing Resin with High Refractive Index. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2004, 17, 115-118	0.7	14
241	Highly transparent resist platforms for 157-nm microlithography: an update 2002,		14
240	Self-assembly. Persistence pays off. <i>Science</i> , 2002 , 296, 859-61	33.3	14
239	Design strategies for 157-nm single-layer photoresists: lithographic evaluation of a poly(\(\begin{align*} \) -trifluoromethyl vinyl alcohol) copolymer 2000 ,		14
238	A solvent-free method for the synthesis of block copolymers with fluorinated pendant groups by a hydrosilylation reaction. <i>Journal of Polymer Science Part A</i> , 2000 , 38, 1179-1183	2.5	14
237	Fifty years of the Baier curve: progress in understanding antifouling coatings. <i>Green Materials</i> , 2017 , 5, 1-3	3.2	13
236	Amphiphilic block copolymer surface composition: Effects of spin coating versus spray coating. <i>Polymer</i> , 2012 , 53, 1321-1327	3.9	13
235	MEMS analogous micro-patterning of thermotropic nematic liquid crystalline elastomer films using a fluorinated photoresist and a hard mask process. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 12635-1264	1 4 1	13
234	High voltage polymer solar cell patterned with photolithography. <i>Journal of Materials Chemistry</i> , 2009 , 19, 5394		13
233	Translational Diffusion in Polydisperse Polymer Samples Studied by Dynamic Imaging of Diffusion ESR. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 15856-15866		13
232	Directing self-assembly in macromolecular systems: Hydrogen bonding in ordered polymers. <i>Pure and Applied Chemistry</i> , 2004 , 76, 1337-1343	2.1	13
231	Switching surface polarity: synthesis and characterization of a fluorinated block copolymer with surface-activetert-butoxycarbonyl groups. <i>Journal of Physical Organic Chemistry</i> , 2000 , 13, 787-795	2.1	13
230	Partitioning of monomer during dispersion polymerisation. <i>Colloids and Surfaces</i> , 1986 , 21, 347-354		13
229	Thermotropic liquid crystalline polyesters containing naphthalenic mesogenic groups. <i>Polymer Bulletin</i> , 1986 , 15, 233	2.4	13
228	Transient materials from thermally-sensitive polycarbonates and polycarbonate nanocomposites. <i>Polymer</i> , 2016 , 101, 59-66	3.9	13
227	Facile Preparation of Epoxide-Functionalized Surfaces via Photocurable Copolymer Coatings and Subsequent Immobilization of Iminodiacetic Acids. <i>ACS Applied Materials & Discourt Acids</i> , 10, 408	97-40	8 79
226	Nanoparticle photoresist studies for EUV lithography 2017 ,		12

225	Polymer Brushes on Hexagonal Boron Nitride. Small, 2019, 15, e1805228	11	12
224	Early detection of Candida albicans biofilms at porous electrodes. <i>Analytical Biochemistry</i> , 2013 , 433, 192-201	3.1	12
223	Neutron reflectivity characterization of the photoacid reaction-diffusion latent and developed images of molecular resists for extreme ultraviolet lithography. <i>Langmuir</i> , 2012 , 28, 7665-78	4	12
222	Tailored star-shaped statistical teroligomers via ATRP for lithographic applications. <i>Journal of Materials Chemistry</i> , 2012 , 22, 73-79		12
221	Photo-switchable polyelectrolyte brush for dual protein patterning. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13789		12
220	Insight in the role of bovine serum albumin for promoting the in situ surface growth of polyhydroxybutyrate (PHB) on patterned surfaces via enzymatic surface-initiated polymerization. <i>Colloids and Surfaces B: Biointerfaces</i> , 2007 , 60, 68-79	6	12
219	Calix[4]resorcinarene Derivatives as High-Resolution Resist Materials for Supercritical CO2 Processing. <i>Advanced Materials</i> , 2008 , 20, 1303-1309	24	12
218	Molecular glass resists for next generation lithography 2006 , 6153, 467		12
217	High-pressure cell for simultaneous small-angle x-ray scattering and laser light scattering measurements. <i>Review of Scientific Instruments</i> , 2001 , 72, 2679-2685	1.7	12
216	Liquid crystalline side chain-coil diblock copolymers by living free radical polymerization. <i>Macromolecular Rapid Communications</i> , 1999 , 20, 622-627	4.8	12
215	Elucidating the patterning mechanism of zirconium-based hybrid photoresists. <i>Journal of Micro/Nanolithography, MEMS, and MOEMS</i> , 2017 , 16, 1	0.7	12
214	The development of fluorous photolithographic materials and their applications to achieve flexible organic electronic devices. <i>Flexible and Printed Electronics</i> , 2016 , 1, 023001	3.1	12
213	Three-Dimensional Printing of Hierarchical Porous Architectures. <i>Chemistry of Materials</i> , 2019 , 31, 100	1791600	22 11
212	Control of PS-b-PMMA directed self-assembly registration by laser induced millisecond thermal annealing 2014 ,		11
211	Sulfonium Salts of Alicyclic Group Functionalized Semifluorinated Alkyl Ether Sulfonates As Photoacid Generators. <i>Chemistry of Materials</i> , 2009 , 21, 4037-4046	9.6	11
210	Fluorinated Quaternary Ammonium Salts as Dissolution Aids for Polar Polymers in Environmentally Benign Supercritical Carbon Dioxide. <i>Chemistry of Materials</i> , 2009 , 21, 3125-3135	9.6	11
209	Acid-Labile, Chain-Scission Polymer Systems Used as Positive-Tone Photoresists Developable in Supercritical CO2. <i>Chemistry of Materials</i> , 2008 , 20, 2932-2936	9.6	11
208	Polyesters with semifluorinated side chains: A proposal for the solid-state structure. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2000 , 38, 1617-1625	2.6	11

207	Synchrotron x-ray study of the smectic layer directional instability. <i>Physical Review E</i> , 2000 , 61, 1593-8	2.4	11
206	EUV photolithography: resist progress in metalörganic complex photoresists. <i>Journal of Micro/Nanolithography, MEMS, and MOEMS</i> , 2018 , 18, 1	0.7	11
205	Nanopatterning of Stable Radical Containing Block Copolymers for Highly Ordered Functional Nanomeshes. <i>Macromolecules</i> , 2016 , 49, 5884-5892	5.5	11
204	Transient Fiber Mats of Electrospun Poly(Propylene Carbonate) Composites with Remarkable Mechanical Strength. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 25495-25505	9.5	10
203	Reduced Lateral Confinement and Its Effect on Stability in Patterned Strong Polyelectrolyte Brushes. <i>Langmuir</i> , 2017 , 33, 3296-3303	4	10
202	In pursuit of Moored Law: polymer chemistry in action. <i>Polymer Journal</i> , 2018 , 50, 45-55	2.7	10
201	Tailored star block copolymer architecture for high performance chemically amplified resists. <i>Advanced Materials</i> , 2012 , 24, 5939-44	24	10
2 00	Development of a directly patterned low-surface-energy polymer brush in supercritical carbon dioxide. <i>ACS Applied Materials & Development of a directly patterned low-surfaces</i> , 2009 , 1, 2013-20	9.5	10
199	LWR reduction and flow of chemically amplified resist patterns during sub-millisecond heating 2011 ,		10
198	Synthesis and characterization of high-throughput nanofabricated poly(4-hydroxy styrene) membranes for in vitro models of barrier tissue. <i>Tissue Engineering - Part C: Methods</i> , 2012 , 18, 667-76	2.9	10
197	The effect of electric and magnetic fields on the melt organization of a nematic cyclic siloxane liquid crystal. <i>Liquid Crystals</i> , 1995 , 18, 787-794	2.3	10
196	An investigation of the smectic-isotropic transition in a side-chain liquid crystal polymer by synchrotron radiation x-ray diffraction. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1993 , 31, 77.	3 -7 97	10
195	Source-based nomenclature for single-strand homopolymers and copolymers (IUPAC Recommendations 2016). <i>Pure and Applied Chemistry</i> , 2016 , 88, 1073-1100	2.1	10
194	Control of polystyrene-block-poly(methyl methacrylate) directed self-assembly by laser-induced millisecond thermal annealing. <i>Journal of Micro/ Nanolithography, MEMS, and MOEMS</i> , 2015 , 14, 031205	5 ^{0.7}	9
193	Vertical Oriented Lamellar Formation of Fluorine- and Silicon-containing Block Copolymers without Neutral Layers. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2015 , 28, 649-652	0.7	9
192	Increasing sensitivity of oxide nanoparticle photoresists 2014,		9
191	Environmentally friendly patterning of thin films in linear methyl siloxanes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5746		9
190	Sub-millisecond post exposure bake of chemically amplified resists by CO 2 laser heat treatment 2010 ,		9

189	Fluorine- and siloxane-containing polymers for supercritical carbon dioxide lithography. <i>Polymer International</i> , 2009 , 58, 302-306	3.3	9
188	Liquid crystalline networks from 1,4-benzenedicarboxylic acid bis(4-cyanatomethylphenyl) ester. <i>Macromolecular Chemistry and Physics</i> , 1997 , 198, 2957-2970	2.6	9
187	Creating Defined 3-D Defects Inside an Opaline Ormocer Matrix with Two-Photon Lithography. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 922-926	4.8	9
186	Lithographic Patterning with Block Copolymers. <i>Journal of Photopolymer Science and Technology =</i> [Fotoporima Konwakai Shi], 2003 , 16, 347-350	0.7	9
185	Synthesis and Phase Behavior of Side-Group Liquid Crystalline Polymers in Nematic Solvents. <i>Macromolecules</i> , 2004 , 37, 3569-3575	5.5	9
184	Molecular Association in Nematic Phases of Cyclic Liquid Crystal Oligomers. <i>Macromolecules</i> , 1996 , 29, 8706-8716	5.5	9
183	Development of Poly(Phenylene)-Based Materials for Thin Film Applications: Optical Waveguides and Low Dielectric Materials. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1993 , 30, 877-897	2.2	9
182	Dynamic x-ray diffraction studies of liquid-crystalline polyesters. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 1990 , 28, 1047-1062	2.6	9
181	Inkjet printing of fluorinated materials and their application to patterning organic semiconductors. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 5647	7.1	8
180	Laser Spike Annealing of DSA Photoresists. <i>Journal of Photopolymer Science and Technology =</i> [Fotoporima Konwakai Shi], 2015 , 28, 631-634	0.7	8
179	Semi-perfluoroalkyl polyfluorene with varying fluorine content: synthesis and photophysical properties. <i>Polymer Chemistry</i> , 2013 , 4, 5291	4.9	8
178	Polymer Brushes as Functional, Patterned Surfaces for Nanobiotechnology. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2013 , 25, 53-56	0.7	8
177	Ferroelectric block copolymers. <i>Macromolecular Symposia</i> , 1997 , 117, 175-179	0.8	8
176	Flow-induced structure in a thermotropic liquid crystalline polymer as studied by SANS. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1998 , 36, 3017-3023	2.6	8
175	Novel silicon-containing polymers as photoresist materials for EUV lithography 2003,		8
174	Surface patterning and biological evaluation of semi-interpenetrated poly(HEMA)/poly(alkyl malolactonate)s. <i>Macromolecular Symposia</i> , 2003 , 197, 369-380	0.8	8
173	Novel resists with nontraditional compositions for EUV lithography 2004,		8
172	Group-Transfer Polymerization of tert-Butyl Methacrylate and [3-(Methacryloxy)propyl]pentamethyldisiloxane: Synthesis and Characterization of Homopolymers and Random and Block Copolymers. <i>Chemistry of Materials</i> , 1996 , 8, 2272-2281	9.6	8

(2014-1995)

171	Silicon-Containing Block Copolymer Resist Materials. ACS Symposium Series, 1995, 281-298	0.4	8
170	Acid-catalyzed photoaromatization of poly(cyclohexadiene-1,2-diol) derivatives into polyphenylene. <i>Polymer Bulletin</i> , 1992 , 28, 33-40	2.4	8
169	Block copolymers containing stable radical and fluorinated blocks with long-range ordered morphologies prepared by anionic polymerization. <i>Polymer Chemistry</i> , 2019 , 10, 5094-5102	4.9	7
168	Synthesis and Processing of Organic Materials in Supercritical Carbon Dioxide. <i>MRS Bulletin</i> , 2009 , 34, 108-115	3.2	7
167	Curvature driven relaxation of disclination loops in liquid crystals. <i>Polymer</i> , 1998 , 39, 4497-4503	3.9	7
166	Molecular Orientation and Dynamics in Ferroelectric Diblock Copolymers Monitored by FT-IR Spectroscopy. <i>Macromolecules</i> , 1998 , 31, 9008-9012	5.5	7
165	Dai et al. Reply. <i>Physical Review Letters</i> , 1995 , 74, 2837	7.4	7
164	Structural Characterization of Biphenyl Ester-Based LC Molecules: Peculiarities of Cyclic Siloxane-Based Materials. <i>Macromolecules</i> , 1996 , 29, 8717-8725	5.5	7
163	The temperature dependence of nematic liquid crystalline polymer melt diffusion. <i>Liquid Crystals</i> , 1993 , 14, 1351-1358	2.3	7
162	Crystallization of Precursors to Forsterite and Chromium-Doped Forsterite. <i>Journal of the American Ceramic Society</i> , 1994 , 77, 33-40	3.8	7
161	Synthesis and evaluation of novel organoelement resists for EUV lithography 2003,		7
160	Quantifying internal charge transfer and mixed ion-electron transfer in conjugated radical polymers. <i>Chemical Science</i> , 2020 , 11, 9962-9970	9.4	7
159	Recent progress in nanoparticle photoresists development for EUV lithography 2016,		7
158	Synthesis, Processing, and Characterization of Helical Polypeptide Rod © oil Mixed Brushes. <i>ACS Macro Letters</i> , 2018 , 7, 1186-1191	6.6	7
157	Morphology of Nanostructured Polymer Brushes Dependent on Production and Treatment. <i>Macromolecules</i> , 2017 , 50, 4715-4724	5.5	6
156	Directed self-assembly: A dress code for block copolymers. <i>Nature Nanotechnology</i> , 2017 , 12, 507-508	28.7	6
155	Oligopeptide-modified hydrophobic and hydrophilic polymers as antifouling coatings. <i>Green Materials</i> , 2017 , 5, 31-43	3.2	6
154	C60-containing polymers for electron beam lithography. <i>Polymer Bulletin</i> , 2014 , 71, 2395-2405	2.4	6

153	Block copolymers with stable radical and fluorinated groups by ATRP. <i>MRS Communications</i> , 2015 , 5, 441-446	2.7	6
152	Time Dependent Behavior of Chemically Amplified Resist Characterized under Sub-millisecond Post Exposure Bake. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2011 , 24, 487-490	0.7	6
151	An electrochemical glucose sensor from an organically modified nanocomposite of viologen and TiO2. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 6869-73	1.3	6
150	Multiple length scale self-organization in liquid crystalline block copolymers. <i>Macromolecular Symposia</i> , 1997 , 117, 141-152	0.8	6
149	The use of Nanocomposite Materials for High Refractive Index Immersion Lithography. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2008 , 21, 621-629	0.7	6
148	A comparison of the reaction-diffusion kinetics between model-EUV polymer and molecular-glass photoresists 2008 ,		6
147	New PFOS Free Photoresist Systems for EUV Lithography. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2006 , 19, 515-520	0.7	6
146	Deintercalation of a chemically switchable polymer from a layered silicate nanocomposite. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2003 , 41, 3151-3159	2.6	6
145	Lithographic results of electron beam photoresists prepared by living free radical polymerization. <i>Polymer Bulletin</i> , 1999 , 43, 93-100	2.4	6
144	Studies of liquid-crystalline polymer phase transitions using synchrotron x-radiation. <i>Macromolecules</i> , 1989 , 22, 498-500	5.5	6
143	New thermotropic polyesters from distyrylbenzene bisphenols. <i>Journal of Polymer Science, Part C: Polymer Letters</i> , 1990 , 28, 331-339		6
142	Positive Tone Nanoparticle Photoresists: New Insight on the Patterning Mechanism. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2016 , 29, 509-512	0.7	6
141	Precise Synthesis of Fluorine-containing Block Copolymers via RAFT. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2016 , 29, 705-708	0.7	6
140	Entropic death of nonpatterned and nanopatterned polyelectrolyte brushes. <i>Journal of Polymer Science Part A</i> , 2019 , 57, 1283-1295	2.5	5
139	Biodegradability, cytotoxicity, and physicochemical treatability of two novel perfluorooctane sulfonate-free photoacid generators. <i>Archives of Environmental Contamination and Toxicology</i> , 2013 , 64, 187-97	3.2	5
138	A Brief Guide to Polymer Nomenclature. <i>Polymer</i> , 2013 , 54, 3-4	3.9	5
137	Orthogonal lithography for organic electronics 2010 ,		5
136	Submillisecond post-exposure bake of chemically amplified resists by CO2 laser spike annealing. <i>Journal of Vacuum Science & Technology B</i> , 2009 , 27, 3020		5

135	Probing electric field response of LC thermosets via time-resolved X-ray and dielectric spectroscopy. <i>Polymer</i> , 2011 , 52, 2206-2213	3.9	5	
134	Molecular glass resists for next generation lithography 2008,		5	
133	Molecular glass resists for EUV lithography 2006 ,		5	
132	Silicon backbone polymers as EUV resists 2004 ,		5	
131	Inorganic polymer resists for EUVL 2005 , 5753, 732		5	
130	Silicon Containing Organic-Inorganic Hybrid Materials as EUV Photoresists. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2005 , 18, 481-487	0.7	5	
129	Development of reworkable underfills, materials, reliability and processing. <i>IEEE Transactions on Components and Packaging Technologies</i> , 1999 , 22, 163-167		5	
128	Thermotropic liquid crystalline polymers with low thermal transitions. II. Low melting thermotropic liquid crystalline homo- and co-polyesters. <i>Journal of Polymer Science Part A</i> , 1995 , 33, 1913-1916	2.5	5	
127	Block Copolymers as Lithographic Materials <i>Journal of Photopolymer Science and Technology =</i> [Fotoporima Konwakai Shi], 1996 , 9, 1-11	0.7	5	
126	Synthesis of Novel Fluorinated [sgrave]-Conjugated Silicon-Containing Polymers: Polysilynes and Polysilanes. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1992 , 29, 787-800	2.2	5	
125	Liquid crystal copolyethers with mixed mesogenic units and flexible spacers. <i>Polymer Bulletin</i> , 1990 , 23, 535-542	2.4	5	
124	The Challenges of Highly Sensitive EUV Photoresists. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2018 , 31, 261-265	0.7	5	
123	Understanding of PS-b-PMMA phase segregation under laser-induced millisecond thermal annealing 2015 ,		4	
122	Supercritical CO2-philic nanoparticles suitable for determining the viability of carbon sequestration in shale. <i>Environmental Science: Nano</i> , 2015 , 2, 288-296	7.1	4	
121	Recent Progress in EUV Metal Oxide Photoresists. <i>Journal of Photopolymer Science and Technology</i> = [Fotoporima Konwakai Shi], 2017 , 30, 93-97	0.7	4	
120	UV-Triggered Transient Electrospun Poly(propylene carbonate)/Poly(phthalaldehyde) Polymer Blend Fiber Mats. <i>ACS Applied Materials & Discrete States</i> , 10, 28928-28935	9.5	4	
119	Controlled roughness reduction of patterned resist polymers using laser-induced sub-millisecond heating. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9115-9121	7.1	4	
118	Phase behaviour of PMMA-b-PHEMA with solvents methanol and THF: modelling and comparison to the experiment. <i>Soft Matter</i> , 2014 , 10, 6172-81	3.6	4	

117	A Brief Guide to Polymer Nomenclature. <i>Polymer Degradation and Stability</i> , 2013 , 98, 1-2	4.7	4
116	From surface coatings to polymer nanofilms: lifting off polymer brushes. <i>RSC Advances</i> , 2013 , 3, 18482	3.7	4
115	Multicomponent Physical Vapor Deposited Films with Homogeneous Molecular Material Distribution Featuring Improved Resist Sensitivity. <i>Advanced Functional Materials</i> , 2012 , 22, 3865-3873	15.6	4
114	Line edge roughness of high deprotection activation energy photoresist by using sub-millisecond post exposure bake 2013 ,		4
113	Non-aqueous negative-tone development of inorganic metal oxide nanoparticle photoresists for next generation lithography 2013 ,		4
112	Combinatorial techniques to efficiently investigate and optimize organic thin film processing and properties. <i>Molecules</i> , 2013 , 18, 4120-39	4.8	4
111	Characterization of the Non-uniform Reaction in Chemically Amplified Calix[4]resorcinarene Molecular Resist Thin Films. <i>Australian Journal of Chemistry</i> , 2011 , 64, 1065	1.2	4
110	High-index nanocomposite photoresist for 193-nm lithography 2009 ,		4
109	Addressing challenges in lithography using sub-millisecond post exposure bake of chemically amplified resists 2011 ,		4
108	Investigation of acid diffusion during laser spike annealing with systematically designed photoacid generators 2012 ,		4
107	Control of Morphology Orientation in Lithographically Patternable Diblock Copolymers. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2007 , 20, 519-522	0.7	4
106	End-functionalization of poly(3-hydroxybutyrate)via genetic engineering for solid surface modification. <i>Chemical Communications</i> , 2005 , 1956-8	5.8	4
105	Adamantane based molecular glass resist for 193 nm lithography 2006 ,		4
104	Malolactonate polymers and copolymers for biomedical applications. <i>Macromolecular Symposia</i> , 2003 , 197, 303-314	0.8	4
103	Strategies for High Transparency Acrylate Resists for 157 nm Lithography. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2003 , 16, 573-580	0.7	4
102	Patternable block copolymers with high transparency at 157 nm: Fluorocarbinol functionalized poly(isoprene-b-cyclohexane). <i>Polymer Bulletin</i> , 2004 , 52, 321-328	2.4	4
101	Structural organisations in polystyrene-based semifluorinated block copolymers for low surface energy coatings. <i>Surface Coatings International Part B: Coatings Transactions</i> , 2004 , 87, 77-82		4
100	Synthesis, Characterization and Lithography Performance of Photoacid Generator with Short Perfluoroalkyl Anion. <i>Polymer Bulletin</i> , 2005 , 55, 333-340	2.4	4

99	Copolymer approach to charge-dissipating electron-beam resists. <i>Journal of Vacuum Science</i> & <i>Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1998 , 16, 3701		4
98	EUV photolithography: resist progress and challenges 2018,		4
97	Positive tone oxide nanoparticle EUV (ONE) photoresists 2016,		4
96	Nomenclature and graphic representations for chemically modified polymers (IUPAC Recommendations 2014). <i>Pure and Applied Chemistry</i> , 2015 , 87, 307-319	2.1	3
95	Interface manipulated two-phase nanostructure in a triblock terpolymer with a short middle segment. <i>Polymer Journal</i> , 2016 , 48, 533-538	2.7	3
94	Transient micropackets for silicon dioxide and polymer-based vaporizable electronics 2016,		3
93	Comparison of star and linear ArF resists 2010 ,		3
92	Top-down Meets Bottom up: Block Copolymers with Photoreactive Segments. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2012 , 25, 17-20	0.7	3
91	Molecular glass resists for next-generation lithography 2009,		3
90	Mixtures of Liquid-Crystalline and Amorphous Dicyanates: Unusual Curing Behavior and Mechanical Properties. <i>Chemistry of Materials</i> , 1997 , 9, 1588-1597	9.6	3
89	Synthesis and mechanical properties of semi-flexible polymer networks. <i>Polymer Gels and Networks</i> , 1998 , 6, 291-300		3
88	Nonplanar Surface Organization of Monodendrons in Side-Chain Modified Liquid Crystalline Block Copolymers <i>Macromolecules</i> , 2008 , 41, 9940-9945	5.5	3
87	Development of an operational high refractive index resist for 193nm immersion lithography 2008,		3
86	Defining the Biology-Materials Interface using both 2D and 3D Lithography. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2006 , 19, 435-440	0.7	3
85	Fluoropolymer resists for 157 nm lithography 2003 , 5039, 539		3
84	Organoelement resists for EUV lithography 2002 ,		3
83	Synchrotron Radiation for Probing the Electric Field Alignment of LC Macromolecules and Polymers. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2000 , 45, 451-501	3	3
82	Block copolymers as additives: a route to enhanced resist performance 1999 ,		3

81	New liquid crystal polyethers and polyesters based on diphenylbutadiene mesogens. <i>Journal of Polymer Science Part A</i> , 1992 , 30, 2541-2547	2.5	3
80	Polymer tacticity in simulated NMR spectra. <i>Journal of Chemical Education</i> , 1989 , 66, 645	2.4	3
79	New Approaches to EUV Photoresists: Studies of Polyacetals and Polypeptoids to Expand the Photopolymer Toolbox. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2021 , 34, 71-74	0.7	3
78	Progress in metal organic cluster EUV photoresists. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2018 , 36, 06J504	1.3	3
77	Photopatterning of Indomethacin Thin Films: a Solvent-Free Vapor-Deposited Photoresist. <i>ACS Applied Materials & Description of Materials & Description (Materials & Description)</i> . 7, 23398-401	9.5	2
76	Thermal Stability of EConjugated n-Ethylene-Glycol-Terminated Quaterthiophene Oligomers: A Computational and Experimental Study. <i>ACS Macro Letters</i> , 2020 , 9, 295-300	6.6	2
75	Electroluminescence from Solution-Processed Pinhole-Free Nanometer-Thickness Layers of Conjugated Polymers. <i>Nano Letters</i> , 2018 , 18, 5382-5388	11.5	2
74	Line width roughness reduction by rational design of photoacid generator for sub-millisecond laser post-exposure bake 2014 ,		2
73	A brief guide to polymer nomenclature from IUPAC. Colloid and Polymer Science, 2013, 291, 457-458	2.4	2
7 ²	Lithography performance and environmental compatibility of PFOS-free photoacid generators. <i>Green Materials</i> , 2017 , 5, 173-181	3.2	2
71	Alkali Metal Based Micro Combustion Using Graphene Micro-valve Trigger. <i>Journal of Physics:</i> Conference Series, 2015 , 660, 012033	0.3	2
70	Nanopatterning with tailored molecules 2014 ,		2
69	Block Copolymer Nanostructured Thin Films for Advanced Patterning 2011 , 763-790		2
68	Patterning by Photolithography 2011 , 475-499		2
67	Molecular glass resists developable in supercritical carbon dioxide for 193 nm lithography 2009,		2
66	Quantitative measurement of the polydispersity in the extent of functionalization of glass-forming calix[4]resorcinarenes. <i>Rapid Communications in Mass Spectrometry</i> , 2009 , 23, 1957-62	2.2	2
65	Tightly bound ligands for hafnium nanoparticle EUV resists 2012,		2
64	Order within order: Studies of semifluorinated block copolymers. <i>Macromolecular Symposia</i> , 1997 , 118, 701-706	0.8	2

(2018-2008)

63	Supercritical Carbon Dioxide Compatible Salts: Synthesis and Application to Next Generation Lithography. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2008 , 21, 393-396	0.7	2
62	The effect of EUV molecular glass architecture on the bulk dispersion of a photo-acid generator 2008 ,		2
61	Characterization of the latent image to developed image in model EUV photoresists 2008,		2
60	Development and evaluation of 193nm immersion generation-three fluid candidates 2008,		2
59	Development of a bond contribution model for structure: property correlations in dry etch studies 2001 , 4345, 945		2
58	Dissolution rate measurements for resist processing in supercritical carbon dioxide 2002 , 4690, 425		2
57	Fluorinated dissolution inhibitors for 157-nm lithography 2002 , 4690, 477		2
56	Microfabrication of hydrogels for biomedical applications 2002,		2
55	Twin nematic phenylbenzoates in a.c. electric fields. <i>Liquid Crystals</i> , 1998 , 25, 199-206	2.3	2
54	Nematic-smectic biphase of a main-chain liquid crystalline polyether. <i>Journal of Materials Science</i> , 1995 , 30, 2023-2028	4.3	2
53	The Processing of LC Thermosets in Orienting External Fields. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 425, 149		2
52	Supercritical fluid processing: opportunities for new resist materials and processes 1996,		2
51	Block and random copolymer resists designed for 193-nm lithography and environmentally friendly supercritical CO 2 development 1996 , 2724, 410		2
50	Liquid crystalline polyesters by staged-addition polycondensation. <i>Polymer Bulletin</i> , 1988 , 20, 45	2.4	2
49	Phase transitions in alkylene glycol terephthalate copolyesters containing mesogenic p-oxybenzoate units. <i>Polymer Bulletin</i> , 1981 , 5-5, 497	2.4	2
48	Silica-PMMA hairy nanoparticles prepared via phase transfer-assisted aqueous miniemulsion atom transfer radical polymerization. <i>Journal of Polymer Science</i> , 2020 , 58, 2310-2316	2.4	2
47	Amphiphilic Nitroxide-Bearing Siloxane-Based Block Copolymer Coatings for Enhanced Marine Fouling Release. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 28790-28801	9.5	2
46	Materials Overview for 2-Photon 3D Printing Applications. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2018 , 31, 425-429	0.7	2

45	Polymer Brushes: Polymer Brushes on Hexagonal Boron Nitride (Small 19/2019). Small, 2019, 15, 1970	09 <u>9</u> 1	1
44	Spatially Controlled Transience of Graphene-Polymer Electronics with Silicon Singulation. <i>Advanced Functional Materials</i> , 2019 , 29, 1900592	15.6	1
43	Systematic study of ligand structures of metal oxide EUV nanoparticle photoresists 2015,		1
42	New developments in ligand-stabilized metal oxide nanoparticle photoresists for EUV lithography 2015 ,		1
41	Block Copolymers as Antifouling and Fouling Resistant Coatings 2015 , 881-924		1
40	Materials systems for 2-photon lithography 2020 , 143-174		1
39	ConfChem Conference on A Virtual Colloquium to Sustain and Celebrate IYC 2011 Initiatives in Global Chemical Education The Continuing Celebration of IYC 2011: What the IUPAC Polymer Division Is Doing To Keep Things Going. <i>Journal of Chemical Education</i> , 2013 , 90, 1559-1560	2.4	1
38	A Brief Guide to Polymer Nomenclature. <i>Polymer International</i> , 2013 , 62, I-II	3.3	1
37	A brief guide to polymer nomenclature. Reactive and Functional Polymers, 2013, 73, iv-v	4.6	1
36	Correction: Manipulation of cell adhesion and dynamics using RGD functionalized polymers. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 6973	7.3	1
35	Applications of Controlled Macromolecular Architectures to Lithography 2011 , 2295-2330		1
34	Studies of Environmentally Friendly Solvent-based Developers. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2011 , 24, 239-240	0.7	1
33	New self-assembly strategies for next generation lithography 2010,		1
32	All-dry processible and PAG-attached molecular glasses for improved lithographic performance 2010 ,		1
31	Deprotection reaction kinetics in chemically amplified photoresists determined by sub-millisecond post exposure bake 2012 ,		1
30	Phase-Selective Chemistry in Block Copolymer Systems1-66		1
29	High refractive index nanoparticle fluids for 193-nm immersion lithography 2009,		1
28	Supercritical CO 2 for high resolution photoresist development 2006 ,		1

27	Tribute to Professor Helmut Ringsdorf. <i>Macromolecules</i> , 2004 , 37, 8485-8486	5.5	1
26	Fluorinated 2-Vinylcyclopropane Copolymers as Low Surface Energy Materials. <i>Macromolecular Symposia</i> , 2001 , 169, 303-312	0.8	1
25	High-sensitivity two-photon photoacid generator for three-dimensional microfabrication 2002 , 4809, 170		1
24	Effect of polymer architecture on self-diffusion of LC polymers. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1999 , 37, 405-414	2.6	1
23	Formation of Transparent Silica P olymer Hybrids Based on Siloxane-Containing Polyimides. <i>ACS Symposium Series</i> , 1996 , 392-402	0.4	1
22	The curing of dicyanate ester liquid crystalline thermosets. <i>Angewandte Makromolekulare Chemie</i> , 1996 , 240, 59-66		1
21	Influence of spin casting solvent on the self-assembly of silicon-containing block copolymer thin films via high temperature thermal treatment. <i>Polymer International</i> ,	3.3	1
20	Patterning mechanism of metal based hybrid EUV resists 2018,		1
19	Radical sensitive Zinc-based nanoparticle EUV photoresists 2019,		1
18	Polymer-Grafted Nanoparticles (PGNs) with Adjustable Graft-Density and Interparticle Hydrogen Bonding Interaction. <i>Macromolecular Rapid Communications</i> , 2021 , e2100629	4.8	1
17	EUV metal oxide hybrid photoresists: ultra-small structures for high-resolution patterning 2018,		1
16	Structure Development in Side Group Liquid Crystalline Diblock Copolymers 1999 , 9-28		1
15	Metal Organic Cluster Photoresists for EUV Lithography. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2019 , 32, 711-714	0.7	1
14	Using Liquid Crystals to Probe the Organization of Helical Polypeptide Brushes Induced by Solvent Pretreatment. <i>Macromolecules</i> , 2021 , 54, 7786-7795	5.5	1
13	Synthesis and curing of novel LC twin epoxy monomers for liquid crystal thermosets 1996 , 34, 1291		1
12	Photochromism of 4-cyanophenylazobenzene in liquid crystalline-coil AB diblock copolymers: the influence of microstructure 2000 , 21, 1309		1
11	Chemical reaction and diffusion kinetics during laser-induced submillisecond heating for lithographic applications. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2019 , 37, 041601	1.3	О
10	Terminology of polymers in advanced lithography (IUPAC Recommendations 2020). <i>Pure and Applied Chemistry</i> , 2020 , 92, 1861-1891	2.1	O

9	High-Resolution Nanopatterning of Free-Standing, Self-Supported Helical Polypeptide Rod Brushes via Electron Beam Lithography <i>ACS Macro Letters</i> , 2021 , 10, 755-759	6.6	0
8	Stability and microbial toxicity of HfO2 and ZrO2 nanoparticles for photolithography. <i>Green Materials</i> , 2019 , 7, 109-117	3.2	O
7	Ionic Dopant-Induced Ordering Enhances the Thermoelectric Properties of a Polythiophene-Based Block Copolymer. <i>Advanced Functional Materials</i> ,2106991	15.6	0
6	Photolithographic Patterning of Organic Electronic Materials 2014 , 399-420		
_			
5	Robert W. Lenz. <i>Macromolecules</i> , 2011 , 44, 1731-1731	5.5	
4	Robert W. Lenz. <i>Macromolecules</i> , 2011 , 44, 1731-1731 The convergence of top-down and bottom-up nanofabrication: formation of 3D structures 2005 , 5592, 12	5.5	
3	The convergence of top-down and bottom-up nanofabrication: formation of 3D structures 2005 ,	5.5	