
Patrick Mathieu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4217809/publications.pdf Version: 2024-02-01

DATRICK MATHIEL

#	Article	IF	CITATIONS
1	Genome-wide chromatin contacts of super-enhancer-associated lncRNA identify LINC01013 as a regulator of fibrosis in the aortic valve. PLoS Genetics, 2022, 18, e1010010.	1.5	6
2	Enhancer promoter interactome and Mendelian randomization identify network of druggable vascular genes in coronary artery disease. Human Genomics, 2022, 16, 8.	1.4	3
3	Oxyphospholipids in Cardiovascular Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 11-19.	1.1	3
4	Enhancer-associated aortic valve stenosis risk locus 1p21.2 alters NFATC2 binding site and promotes fibrogenesis. IScience, 2021, 24, 102241.	1.9	9
5	System Genetics Including Causal Inference Identify Immune Targets for Coronary Artery Disease and the Lifespan. Circulation Genomic and Precision Medicine, 2021, 14, e003196.	1.6	7
6	Prioritization of candidate causal genes for asthma in susceptibility loci derived from UK Biobank. Communications Biology, 2021, 4, 700.	2.0	77
7	A Role for Heme and Iron in Calcific Aortic Valve Disease?. Canadian Journal of Cardiology, 2021, 37, 1310-1311.	0.8	Ο
8	A transâ€omic Mendelian randomization study of parental lifespan uncovers novel aging biology and therapeutic candidates for chronic diseases. Aging Cell, 2021, 20, e13497.	3.0	8
9	Polygenic Risk Score for Coronary Artery Disease Improves the Prediction of Early-Onset Myocardial Infarction and Mortality in Men. Circulation Genomic and Precision Medicine, 2021, 14, CIRCGEN121003452.	1.6	17
10	Electronic health record-based genome-wide meta-analysis provides insights on the genetic architecture of non-alcoholic fatty liver disease. Cell Reports Medicine, 2021, 2, 100437.	3.3	56
11	Interaction of Autotaxin With Lipoprotein(a) in Patients With Calcific Aortic Valve Stenosis. JACC Basic To Translational Science, 2020, 5, 888-897.	1.9	15
12	Warning AlarmIn Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1804-1807.	1.1	0
13	Phenome-wide analyses establish a specific association between aortic valve PALMD expression and calcific aortic valve stenosis. Communications Biology, 2020, 3, 477.	2.0	12
14	Single-cell expression and Mendelian randomization analyses identify blood genes associated with lifespan and chronic diseases. Communications Biology, 2020, 3, 206.	2.0	7
15	Dietary sucrose induces metabolic inflammation and atherosclerotic cardiovascular diseases more than dietary fat in LDLr ApoB100/100 mice. Atherosclerosis, 2020, 304, 9-21.	0.4	14
16	Enhancer-mediated enrichment of interacting JMJD3–DDX21 to ENPP2 locus prevents R-loop formation and promotes transcription. Nucleic Acids Research, 2019, 47, 8424-8438.	6.5	28
17	A Mendelian randomization study of IL6 signaling in cardiovascular diseases, immune-related disorders and longevity. Npj Genomic Medicine, 2019, 4, 23.	1.7	91

18 Molecular Mechanisms of Aortic Valve Pathology. , 2019, , 87-98.

#	Article	IF	CITATIONS
19	Lipoprotein(a), Oxidized Phospholipids, and Aortic Valve Microcalcification Assessed by 18F-Sodium Fluoride Positron Emission Tomography and Computed Tomography. CJC Open, 2019, 1, 131-140.	0.7	38
20	Autotaxin and Lipoprotein Metabolism in Calcific Aortic Valve Disease. Frontiers in Cardiovascular Medicine, 2019, 6, 18.	1.1	20
21	PALMD as a novel target for calcific aortic valve stenosis. Current Opinion in Cardiology, 2019, 34, 105-111.	0.8	6
22	Activated platelets promote an osteogenic programme and the progression of calcific aortic valve stenosis. European Heart Journal, 2019, 40, 1362-1373.	1.0	49
23	A transcriptome-wide association study identifies PALMD as a susceptibility gene for calcific aortic valve stenosis. Nature Communications, 2018, 9, 988.	5.8	93
24	DNA methylation of a PLPP3 MIR transposon-based enhancer promotes an osteogenic programme in calcific aortic valve disease. Cardiovascular Research, 2018, 114, 1525-1535.	1.8	27
25	ApoB/ApoAâ€I Ratio is Associated With Faster Hemodynamic Progression of Aortic Stenosis: Results From the PROGRESSA (Metabolic Determinants of the Progression of Aortic Stenosis) Study. Journal of the American Heart Association, 2018, 7, .	1.6	10
26	GATA6 Regulates Aortic Valve Remodeling, and Its Haploinsufficiency Leads to Right-Left Type Bicuspid Aortic Valve. Circulation, 2018, 138, 1025-1038.	1.6	63
27	Soluble CD14 is associated with the structural failure of bioprostheses. Clinica Chimica Acta, 2018, 485, 173-177.	0.5	4
28	CAVD: civilization aortic valve disease. European Heart Journal, 2017, 38, 2198-2200.	1.0	7
29	OxLDL-derived lysophosphatidic acid promotes the progression of aortic valve stenosis through a LPAR1-RhoA–NF-ήB pathway. Cardiovascular Research, 2017, 113, 1351-1363.	1.8	76
30	Do Oxidized Lipoproteins Cause Atherosclerotic Cardiovascular Diseases?. Canadian Journal of Cardiology, 2017, 33, 1513-1516.	0.8	2
31	Pathobiology of Lp(a) in calcific aortic valve disease. Expert Review of Cardiovascular Therapy, 2017, 15, 797-807.	0.6	23
32	Sex-Related Discordance Between Aortic Valve Calcification and Hemodynamic Severity of Aortic Stenosis. Circulation Research, 2017, 120, 681-691.	2.0	165
33	Synthesis of novel substituted pyrimidine derivatives bearing a sulfamide group and their in vitro cancer growth inhibition activity. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 299-302.	1.0	24
34	Association between plasma lipoprotein levels and bioprosthetic valve structural degeneration. Heart, 2016, 102, 1915-1921.	1.2	24
35	RNA expression profile of calcified bicuspid, tricuspid, and normal human aortic valves by RNA sequencing. Physiological Genomics, 2016, 48, 749-761.	1.0	52
36	Pathophysiology and management of multivalvular disease. Nature Reviews Cardiology, 2016, 13, 429-440.	6.1	59

#	Article	IF	CITATIONS
37	Impact of a 1-year lifestyle modification program on plasma lipoprotein and PCSK9 concentrations in patients with coronary artery disease. Journal of Clinical Lipidology, 2016, 10, 1353-1361.	0.6	20
38	Altered DNA Methylation of Long Noncoding RNA <i>H19</i> in Calcific Aortic Valve Disease Promotes Mineralization by Silencing <i>NOTCH1</i> . Circulation, 2016, 134, 1848-1862.	1.6	182
39	Calcific aortic stenosis. Nature Reviews Disease Primers, 2016, 2, 16006.	18.1	568
40	Circulating Lp-PLA2 is associated with high valvuloarterial impedance and low arterial compliance in patients with aortic valve bioprostheses. Clinica Chimica Acta, 2016, 455, 20-25.	0.5	3
41	The Underestimated Belly Factor: Waist Circumference Is Linked to Significant Morbidity Following Isolated Coronary Artery Bypass Grafting. Canadian Journal of Cardiology, 2016, 32, 327-335.	0.8	22
42	Quantification of Treatment Effect Modification on Both an Additive and Multiplicative Scale. PLoS ONE, 2016, 11, e0153010.	1.1	12
43	The pathology and pathobiology of bicuspid aortic valve: State of the art and novel research perspectives. Journal of Pathology: Clinical Research, 2015, 1, 195-206.	1.3	55
44	Quinazolineâ€4â€piperidine sulfamides are specific inhibitors of human <scp>NPP</scp> 1 and prevent pathological mineralization of valve interstitial cells. British Journal of Pharmacology, 2015, 172, 4189-4199.	2.7	33
45	Innate and Adaptive Immunity in Calcific Aortic Valve Disease. Journal of Immunology Research, 2015, 2015, 1-11.	0.9	81
46	Autotaxin Derived From Lipoprotein(a) and Valve Interstitial Cells Promotes Inflammation and Mineralization of the Aortic Valve. Circulation, 2015, 132, 677-690.	1.6	185
47	Relationship Between Insulin-Like Growth Factor Binding Protein-2 and Left Ventricular Stroke Volume in Patients With Aortic Stenosis. Canadian Journal of Cardiology, 2015, 31, 1447-1454.	0.8	11
48	Adenosine derived from ecto-nucleotidases in calcific aortic valve disease promotes mineralization through A2a adenosine receptor. Cardiovascular Research, 2015, 106, 109-120.	1.8	40
49	Carbonic anhydrase XII in valve interstitial cells promotes the regression of calcific aortic valve stenosis. Journal of Molecular and Cellular Cardiology, 2015, 82, 104-115.	0.9	17
50	Tricuspid Regurgitation Is Associated With Increased Risk of Mortality in Patients With Low-Flow Low-Gradient Aortic Stenosis and Reduced Ejection Fraction. JACC: Cardiovascular Interventions, 2015, 8, 588-596.	1.1	56
51	Oxidized Phospholipids, Lipoprotein(a),Âand Progression of CalcificÂAortic ValveÂStenosis. Journal of the American College of Cardiology, 2015, 66, 1236-1246.	1.2	295
52	Calcium Signaling Pathway Genes <i>RUNX2</i> and <i>CACNA1C</i> Are Associated With Calcific Aortic Valve Disease. Circulation: Cardiovascular Genetics, 2015, 8, 812-822.	5.1	51
53	Parathyroid hormone is associated with the LV mass after aortic valve replacement. Heart, 2014, 100, 1859-1864.	1.2	8
54	Ectopic visceral fat: A clinical and molecular perspective on the cardiometabolic risk. Reviews in Endocrine and Metabolic Disorders, 2014, 15, 289-298.	2.6	50

#	Article	IF	CITATIONS
55	Molecular biology of calcific aortic valve disease: towards new pharmacological therapies. Expert Review of Cardiovascular Therapy, 2014, 12, 851-862.	0.6	54
56	Early Development of Calcific Aortic Valve Disease and Left Ventricular Hypertrophy in a Mouse Model of Combined Dyslipidemia and Type 2 Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2283-2291.	1.1	41
57	Paradoxical low-flow, low-gradient aortic stenosis despite preserved left ventricular ejection fraction: new insights from weights of operatively excised aortic valves. European Heart Journal, 2014, 35, 2655-2662.	1.0	46
58	Elevated Expression of Lipoprotein-Associated Phospholipase A2 in Calcific Aortic Valve Disease. Journal of the American College of Cardiology, 2014, 63, 460-469.	1.2	108
59	Mechanical strain induces the production of spheroid mineralized microparticles in the aortic valve through a RhoA/ROCK-dependent mechanism. Journal of Molecular and Cellular Cardiology, 2014, 67, 49-59.	0.9	61
60	P2Y2 receptor represses IL-6 expression by valve interstitial cells through Akt: Implication for calcific aortic valve disease. Journal of Molecular and Cellular Cardiology, 2014, 72, 146-156.	0.9	114
61	Basic Mechanisms of Calcific Aortic Valve Disease. Canadian Journal of Cardiology, 2014, 30, 982-993.	0.8	93
62	Abstract 16348: Ecto-Nucleotidase-Derived Adenosine Promotes Mineralization Through A2a Receptor in Calcified Aortic Valves Disease. Circulation, 2014, 130, .	1.6	0
63	Inflammation Is Associated with the Remodeling of Calcific Aortic Valve Disease. Inflammation, 2013, 36, 573-581.	1.7	163
64	The Genetic and Metabolic Determinants of Cardiovascular Complications in Type 2 Diabetes: Recent Insights from Animal Models and Clinical Investigations. Canadian Journal of Diabetes, 2013, 37, 351-358.	0.4	6
65	Research update for articles published in <scp>EJCI</scp> in 2011. European Journal of Clinical Investigation, 2013, 43, 1097-1110.	1.7	2
66	Lipoprotein lipase in aortic valve stenosis is associated with lipid retention and remodelling. European Journal of Clinical Investigation, 2013, 43, 570-578.	1.7	25
67	High Expression of the Pi-Transporter SLC20A1/Pit1 in Calcific Aortic Valve Disease Promotes Mineralization through Regulation of Akt-1. PLoS ONE, 2013, 8, e53393.	1.1	69
68	Pharmacology of ectonucleotidases: Relevance for the treatment of cardiovascular disorders. European Journal of Pharmacology, 2012, 696, 1-4.	1.7	15
69	ATP acts as a survival signal and prevents the mineralization of aortic valve. Journal of Molecular and Cellular Cardiology, 2012, 52, 1191-1202.	0.9	86
70	Impact of Metabolic Syndrome on Progression of Aortic Stenosis. Journal of the American College of Cardiology, 2012, 60, 216-223.	1.2	103
71	Inhibition of ectonucleotidase with ARL67156 prevents the development of calcific aortic valve disease in warfarin-treated rats. European Journal of Pharmacology, 2012, 689, 139-146.	1.7	37
72	Calcific Aortic Valve Disease: Not Simply a Degenerative Process. Circulation, 2011, 124, 1783-1791.	1.6	699

#	Article	IF	CITATIONS
73	Angiotensin receptor blockers are associated with a lower remodelling score of stenotic aortic valves. European Journal of Clinical Investigation, 2011, 41, 1172-1179.	1.7	53
74	Increased Biglycan in Aortic Valve Stenosis Leads to the Overexpression of Phospholipid Transfer Protein via Toll-Like Receptor 2. American Journal of Pathology, 2010, 176, 2638-2645.	1.9	63
75	Refining Molecular Pathways Leading to Calcific Aortic Valve Stenosis by Studying Gene Expression Profile of Normal and Calcified Stenotic Human Aortic Valves. Circulation: Cardiovascular Genetics, 2009, 2, 489-498.	5.1	123
76	Visceral Obesity. Hypertension, 2009, 53, 577-584.	1.3	398
77	Genomics. Journal of the American College of Cardiology, 2008, 51, 1327-1336.	1.2	76
78	Visceral obesity and the heart. International Journal of Biochemistry and Cell Biology, 2008, 40, 821-836.	1.2	142
79	Abdominal obesity and the metabolic syndrome: A surgeon's perspective. Canadian Journal of Cardiology, 2008, 24, 19D-23D.	0.8	16
80	Association Between Plasma LDL Particle Size, Valvular Accumulation of Oxidized LDL, and Inflammation in Patients With Aortic Stenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 187-193.	1.1	151
81	Metabolic Syndrome Negatively Influences Disease Progression and Prognosis in Aortic Stenosis. Journal of the American College of Cardiology, 2006, 47, 2229-2236.	1.2	150
82	Metabolic Syndrome Is Associated With Faster Degeneration of Bioprosthetic Valves. Circulation, 2006, 114, I-512-I-517.	1.6	91
83	Calcification of human valve interstitial cells is dependent on alkaline phosphatase activity. Journal of Heart Valve Disease, 2005, 14, 353-7.	0.5	78
84	Electronic Health Record-Based Genome-Wide Meta-Analysis Provides New Insights on the Genetic Architecture of Non-Alcoholic Fatty Liver Disease. SSRN Electronic Journal, 0, , .	0.4	2