Stéphance Clénet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4217599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel and General Approach for Solving the Ion-Flow Field Problem by a Regularization Technique. IEEE Transactions on Power Delivery, 2021, 36, 3774-3783.	4.3	4
2	Influence of laser powder bed fusion process conditions and resulting microstructures on the electromagnetic properties of a 16MnCr5 steel. Additive Manufacturing, 2021, 41, 101945.	3.0	1
3	Magnetic ageing investigation of bulk low-carbon silicon steel. Journal of Magnetism and Magnetic Materials, 2021, 527, 167761.	2.3	1
4	Model Order Reduction Applied to a Linear Finite Element Model of a Squirrel Cage Induction Machine Based on POD Approach. IEEE Transactions on Magnetics, 2021, 57, 1-4.	2.1	9
5	Sensor Placement for Field Reconstruction in Rotating Electrical Machines. IEEE Transactions on Magnetics, 2021, 57, 1-4.	2.1	3
6	PCA Model of Fundamental Acoustic Finger Force for Out-of-Plane Ultrasonic Vibration and its Correlation with Friction Reduction. IEEE Transactions on Haptics, 2021, 14, 551-563.	2.7	3
7	Improving Global Ferromagnetic Characteristics of Laminations by Heterogeneous Deformation. IEEE Transactions on Energy Conversion, 2021, 36, 1953-1961.	5.2	1
8	Application of the JMAK precipitation law in iron loss modelling to account for magnetic ageing effect. Journal of Magnetism and Magnetic Materials, 2021, , 168901.	2.3	3
9	Error Estimators for Proper Generalized Decomposition in Time-Dependent Electromagnetic Field Problems. IEEE Transactions on Magnetics, 2020, 56, 1-4.	2.1	2
10	Surrogate Model Based on the POD Combined With the RBF Interpolation of Nonlinear Magnetostatic FE Model. IEEE Transactions on Magnetics, 2020, 56, 1-4.	2.1	12
11	Model order reduction techniques applied to magnetodynamic <i>T-Ω</i> -formulation. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2020, 39, 1057-1069.	0.9	4
12	Magneto-thermal characterization of bulk forged magnetic steel used in claw pole machine. Journal of Magnetism and Magnetic Materials, 2020, 502, 166526.	2.3	4
13	Experimental set up for magnetomechanical measurements with a closed flux path sample. Open Physics, 2020, 18, 517-525.	1.7	1
14	Branch and Bound Algorithm Based on Prediction Error of Metamodel for Computational Electromagnetics. Energies, 2020, 13, 6749.	3.1	1
15	Development and validation of an electrical and magnetic characterization device for massive parallelepiped specimens. International Journal of Applied Electromagnetics and Mechanics, 2019, 61, S31-S38.	0.6	4
16	Exploitation of independent stator and rotor geometrical periodicities in electrical machines using the Schur complement. International Journal of Applied Electromagnetics and Mechanics, 2019, 60, 503-528.	0.6	0
17	Mesh Deformation Based on Radial Basis Function Interpolation Applied to Low-Frequency Electromagnetic Problem. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	14
18	Stochastic Metamodel for Probability of Detection Estimation of Eddy-Current Testing Problem in Random Geometric. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	0

#	Article	IF	CITATIONS
19	Model Order Reduction Techniques applied to Magnetodynamic Scalar Potential Formulation. , 2019, , .		2
20	Punching effect directly on electrical machine stator strips. International Journal of Applied Electromagnetics and Mechanics, 2019, 61, S107-S114.	0.6	2
21	Global parameters sensitivity analysis and development of a two-dimensional real-time model of proton-exchange-membrane fuel cells. Energy Conversion and Management, 2018, 162, 276-292.	9.2	61
22	Influence of Material and Geometric Parameters on the Sensor Based on Active Materials. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	1
23	Iterative Kriging-Based Methods for Expensive Black-Box Models. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	5
24	Application of the Proper Generalized Decomposition to Solve Magnetoelectric Problem. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	6
25	Comparative study of methods for optimization of electromagnetic devices with uncertainty. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2018, 37, 704-717.	0.9	4
26	Enhanced Meta-Model-Based Optimization Under Constraints Using Parallel Computations. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	0
27	Robust model order reduction of an electrical machine at startup through reduction error estimation. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2018, 31, e2277.	1.9	2
28	Data-Driven Model-Order Reduction for Magnetostatic Problem Coupled With Circuit Equations. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	12
29	Finite-Element Model Reduction of Surface-Mounted Permanent Magnet Machines by Exploitation of Geometrical Periodicity. IEEE Transactions on Magnetics, 2018, 54, 1-11.	2.1	0
30	Proper Generalized Decomposition Applied on a Rotating Electrical Machine. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	7
31	EPE'13 ECCE Europe, a carbon-neutral conference. EPE Journal (European Power Electronics and Drives) Tj	ETQq1_1 0. 0.7	784314 rgBT
32	Temperature Dependence in the Jiles–Atherton Model for Non-Oriented Electrical Steels: An Engineering Approach. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	13
33	Comparison of DEIM and BPIM to Speed Up a POD-Based Nonlinear Magnetostatic Model. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	3
34	Structure Preserving Model Reduction of Low-Frequency Electromagnetic Problem Based on POD and DEIM. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	6
35	Rotation Movement Based on the Spatial Fourier Interpolation Method. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	1
36	Balanced Proper Orthogonal Decomposition Applied to Magnetoquasi-Static Problems Through a Stabilization Methodology. IEEE Transactions on Magnetics, 2017, 53, 1-10.	2.1	12

#	Article	IF	CITATIONS
37	Model Order Reduction of Electrical Machines With Multiple Inputs. IEEE Transactions on Industry Applications, 2017, 53, 3355-3360.	4.9	14
38	Influence of the Manufacturing Process of a Claw-Pole Alternator on Its Stator Shape and Acoustic Noise. IEEE Transactions on Industry Applications, 2017, 53, 4389-4395.	4.9	5
39	Slinky stator: The impact of manufacturing process on the magnetic properties. , 2017, , .		3
40	Model order reduction of electrical machines with multiple inputs. , 2016, , .		1
41	Structure preserving model reduction of low frequency electromagnetic problem based on POD and DEIM. , 2016, , .		Ο
42	Global sensitivity analysis applied to an hydrogenerator. , 2016, , .		0
43	A study of the effects of temperature on magnetic and copper losses in electrical machines. , 2016, , .		7
44	Rotation movement based on the spatial fourier interpolation method (SFIM). , 2016, , .		0
45	Approximation Methods to Solve Stochastic Problems in Computational Electromagnetics. Mathematics in Industry, 2016, , 199-214.	0.3	2
46	Error Estimation for Model-Order Reduction of Finite-Element Parametric Problems. IEEE Transactions on Magnetics, 2016, 52, 1-10.	2.1	5
47	Influence of the manufacturing process of a claw-pole alternator on its stator shape and acoustic noise. , 2016, , .		4
48	Characterization of the Local Incremental Permeability of a Ferromagnetic Plate Based on a Four Needles Technique. IEEE Transactions on Magnetics, 2016, , 1-1.	2.1	2
49	Optimization of the TEAM 22 problem using POD-EIM reduced model. , 2016, , .		1
50	Parametric analysis of magnetoharmonic problem based on proper generalized decomposition. , 2016, , .		0
51	Comparison of DEIM and BPIM to speed up a POD-based nonlinear magnetostatic model. , 2016, , .		Ο
52	Transient simulation of an electrical rotating machine achieved through model order reduction. Advanced Modeling and Simulation in Engineering Sciences, 2016, 3, .	1.7	18
53	Uncertainty Quantification Using Sparse Approximation for Models With a High Number of Parameters: Application to a Magnetoelectric Sensor. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	8
54	Application of the PGD and DEIM to Solve a 3-D Non-Linear Magnetostatic Problem Coupled With the Circuit Equations. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	14

#	Article	IF	CITATIONS
55	Reduction of a Finite-Element Parametric Model Using Adaptive POD Methods—Application to Uncertainty Quantification. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	10
56	Study of the Influence of the Fabrication Process Imperfections on the Performance of a Claw Pole Synchronous Machine Using a Stochastic Approach. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	2
57	Multirate Coupling of Controlled Rectifier and Non-Linear Finite Element Model Based on Waveform Relaxation Method. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	1
58	Characterization of the local electrical properties of electrical machine parts with non-trivial geometry. International Journal of Applied Electromagnetics and Mechanics, 2015, 48, 201-206.	0.6	4
59	Model-Order Reduction of Magnetoquasi-Static Problems Based on POD and Arnoldi-Based Krylov Methods. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	22
60	Model-Order Reduction of Multiple-Input Non-Linear Systems Based on POD and DEI Methods. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	30
61	Proper Generalized Decomposition Method Applied to Solve 3-D Magnetoquasi-Static Field Problems Coupling With External Electric Circuits. IEEE Transactions on Magnetics, 2015, 51, 1-10.	2.1	14
62	Uncertainty Quantification and Sensitivity Analysis in Electrical Machines With Stochastically Varying Machine Parameters. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	24
63	Residual-based a posteriori error estimation for stochastic magnetostatic problems. Journal of Computational and Applied Mathematics, 2015, 289, 51-67.	2.0	3
64	Error estimation of a proper orthogonal decomposition reduced model of a permanent magnet synchronous machine. IET Science, Measurement and Technology, 2015, 9, 172-177.	1.6	6
65	Uncertainty propagation of iron loss from characterization measurements to computation of electrical machines. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2015, 34, 624-636.	0.9	1
66	Modélisation couplée multi physique d'une hydrolienne RIM-DRIVEN. Houille Blanche, 2015, 101, 14-21.	0.3	1
67	Experiences on Carbon Care Conferences. , 2014, , .		4
68	Error estimation of POD reduced model - application to a permanent magnet synchronous machine. , 2014, , .		0
69	Model order reduction applied to the numerical study of electrical motor based on POD method taking into account rotation movement. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2014, 27, 485-494.	1.9	26
70	Influence of uncertainties on the <i>B</i> (<i>H</i>) curves on the flux linkage of a turboalternator. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2014, 27, 385-399.	1.9	6
71	Model Order Reduction of Non-Linear Magnetostatic Problems Based on POD and DEI Methods. IEEE Transactions on Magnetics, 2014, 50, 33-36.	2.1	66
72	A Posteriori Error Estimation for Stochastic Static Problems. IEEE Transactions on Magnetics, 2014, 50, 545-548.	2.1	4

#	Article	IF	CITATIONS
73	Benefits of Waveform Relaxation Method and Output Space Mapping for the Optimization of Multirate Systems. IEEE Transactions on Magnetics, 2014, 50, 653-656.	2.1	2
74	Influence of the stator deformation on the behaviour of a claw-pole generator. , 2014, , .		5
75	Solution of Large Stochastic Finite Element Problems—Application to ECT-NDT. IEEE Transactions on Magnetics, 2013, 49, 1605-1608.	2.1	9
76	Stochastic Nondestructive Testing Simulation: Sensitivity Analysis Applied to Material Properties in Clogging of Nuclear Powerplant Steam Generators. IEEE Transactions on Magnetics, 2013, 49, 1873-1876.	2.1	14
77	Analytical modeling to predict the cutting behavior of ferromagnetic steels: A coupled magnetic–mechanical approach. International Journal of Solids and Structures, 2013, 50, 2078-2086.	2.7	8
78	A Priori Error Indicator in the Transformation Method for Problems With Geometric Uncertainties. IEEE Transactions on Magnetics, 2013, 49, 1597-1600.	2.1	3
79	Stochastic modeling of anhysteretic magnetic curve using random inter-dependant coefficients. International Journal of Applied Electromagnetics and Mechanics, 2013, 43, 151-159.	0.6	1
80	Stochastic Jiles-Atherton model accounting for soft magnetic material variability. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2013, 32, 1679-1691.	0.9	2
81	Stochastic postâ€processing calculation of iron losses – application to a PMSM. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2013, 32, 1383-1392.	0.9	6
82	Model order reduction of quasi-static problems based on POD and PGD approaches. EPJ Applied Physics, 2013, 64, 24514.	0.7	21
83	Stochastic Modeling of Soft Magnetic Properties of Electrical Steels: Application to Stators of Electrical Machines. IEEE Transactions on Magnetics, 2012, 48, 2573-2584.	2.1	30
84	Comparison of two approaches to compute magnetic field in problems with random domains. IET Science, Measurement and Technology, 2012, 6, 331.	1.6	3
85	Spectral stochastic finite element method for solving 3D stochastic eddy current problems. International Journal of Applied Electromagnetics and Mechanics, 2012, 39, 753-760.	0.6	5
86	A global approach for the design of a Rim-Driven marine turbine generator for sail boat. , 2012, , .		7
87	Nonlinear Proper Generalized Decomposition Method Applied to the Magnetic Simulation of a SMC Microstructure. IEEE Transactions on Magnetics, 2012, 48, 3242-3245.	2.1	13
88	Experimental Characterization of the Iron Losses Variability in Stators of Electrical Machines. IEEE Transactions on Magnetics, 2012, 48, 1629-1632.	2.1	17
89	Adaptive Method for Non-Intrusive Spectral Projection—Application on a Stochastic Eddy Current NDT Problem. IEEE Transactions on Magnetics, 2012, 48, 759-762.	2.1	21
90	Overlapping Finite Elements Used to Connect Non-Conforming Meshes in 3-D With a Vector Potential Formulation. IEEE Transactions on Magnetics, 2011, 47, 1218-1221.	2.1	10

#	Article	IF	CITATIONS
91	3-D Stochastic Spectral Finite-Element Method in Static Electromagnetism Using Vector Potential Formulation. IEEE Transactions on Magnetics, 2011, 47, 1250-1253.	2.1	26
92	Transformation Methods for Static Field Problems With Random Domains. IEEE Transactions on Magnetics, 2011, 47, 1446-1449.	2.1	9
93	Calculation of field distribution in electromagnetic problems with random domains. , 2011, , .		1
94	Error estimation in a stochastic finite element method in electrokinetics. International Journal for Numerical Methods in Engineering, 2010, 81, 1417-1438.	2.8	8
95	Solution of Dual Stochastic Static Formulations Using Double Orthogonal Polynomials. IEEE Transactions on Magnetics, 2010, 46, 3543-3546.	2.1	2
96	Solution of Static Field Problems With Random Domains. IEEE Transactions on Magnetics, 2010, 46, 3385-3388.	2.1	11
97	Overlapping Finite Elements for Arbitrary Surfaces in 3-D. IEEE Transactions on Magnetics, 2010, 46, 3473-3476.	2.1	2
98	3D Stochastic Spectral Finite Element Method in static electromagnetism using vector potential formulation. , 2010, , .		0
99	Statistical modeling of an anisotropic lamination stack. , 2010, , .		Ο
100	Overlapping finite elements used to connect non-conforming meshes in 3D with a vector potential formulation. , 2010, , .		2
101	Transformation methods for static field problems with random domains. , 2010, , .		1
102	Influence of wind turbines on power system reliability through probabilistic studies. , 2010, , .		5
103	Modelling and inversion-based control of a magnetorheological vehicle suspension. , 2010, , .		1
104	Comparison of Error Estimators in Eddy Current Testing. IEEE Transactions on Magnetics, 2009, 45, 968-971.	2.1	4
105	Methodology to Study the Influence of the Microscopic Structure of Soft Magnetic Composites on Their Global Magnetization Curve. IEEE Transactions on Magnetics, 2009, 45, 1178-1181.	2.1	17
106	Method to Connect Nonconforming Mesh in 3-D With the Overlapping Method. IEEE Transactions on Magnetics, 2009, 45, 1420-1423.	2.1	6
107	Speeding Up SSFEM Computation Using Kronecker Tensor Products. IEEE Transactions on Magnetics, 2009, 45, 1432-1435.	2.1	7
108	Permanent magnet modelling for dynamic applications. Journal of Magnetism and Magnetic Materials, 2008, 320, 830-835.	2.3	9

#	Article	IF	CITATIONS
109	Minor loops modelling with a modified Jiles–Atherton model and comparison with the Preisach model. Journal of Magnetism and Magnetic Materials, 2008, 320, e1034-e1038.	2.3	48
110	Discrete finite element characterizations of source fields for volume and boundary constraints in electromagnetic problems. Journal of Computational and Applied Mathematics, 2008, 215, 438-447.	2.0	9
111	Implementation of an Anisotropic Vector Hysteresis Model in a 3-D Finite-Element Code. IEEE Transactions on Magnetics, 2008, 44, 918-921.	2.1	10
112	Comparison Between NEM and FEM in 2-D Magnetostatics Using an Error Estimator. IEEE Transactions on Magnetics, 2008, 44, 1342-1345.	2.1	11
113	Current Calculation in Electrokinetics Using a Spectral Stochastic Finite Element Method. IEEE Transactions on Magnetics, 2008, 44, 754-757.	2.1	13
114	Magnetorheological Brake for Haptic Rendering. Lecture Notes in Computer Science, 2008, , 941-945.	1.3	10
115	A mixed finite element/meshless natural element method for simulating rotative electromagnetic machines. EPJ Applied Physics, 2008, 43, 197-208.	0.7	5
116	Implementation of a vector hysteresis model in 2D finite element analysis: Study of a RSST with anisotropic sample. International Journal of Applied Electromagnetics and Mechanics, 2008, 28, 41-47.	0.6	5
117	Analysis of a rotational single sheet tester using 3D finite element model taking into account hysteresis effect. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2007, 26, 1037-1048.	0.9	4
118	Computation of the magnetic flux in the finite elements method. EPJ Applied Physics, 2007, 39, 119-128.	0.7	0
119	Comparison of two 5-phase Permanent Magnet machine winding configurations. Application on naval propulsion specifications , 2007, , .		15
120	Study of an innovative electrical machine fitted to marine current turbines. , 2007, , .		29
121	3-D Spectral Stochastic Finite Element Method in Electromagnetism. IEEE Transactions on Magnetics, 2007, 43, 1209-1212.	2.1	42
122	Source Field Computation in NDT Applications. IEEE Transactions on Magnetics, 2007, 43, 1785-1788.	2.1	16
123	Inclusion of a stressâ€dependent Preisach model in 2D FE calculations. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2006, 25, 81-90.	0.9	3
124	Calculation of extra copper losses with imposed current magnetodynamic formulations. IEEE Transactions on Magnetics, 2006, 42, 767-770.	2.1	13
125	Application of the natural-element method to model moving electromagnetic devices. IEEE Transactions on Magnetics, 2006, 42, 727-730.	2.1	15
126	Modelling of a hysteresis motor using the Jiles-Atherton model. EPJ Applied Physics, 2005, 29, 259-265.	0.7	6

#	Article	IF	CITATIONS
127	Adaptation of the Frequency Dependent Jiles-Atherton Model with B as entry variable. International Journal of Applied Electromagnetics and Mechanics, 2004, 19, 187-191.	0.6	7
128	Estimation of Numerical Errors Due to Time and Space Discretizations. IEEE Transactions on Magnetics, 2004, 40, 1061-1064.	2.1	0
129	Comparison of the Preisach and Jilesâ€Atherton models to take hysteresis phenomenon into account in finite element analysis. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2004, 23, 825-834.	0.9	8
130	Evaluation of 3-D Finite Element Method to Study and Design a Soft Magnetic Composite Machine. IEEE Transactions on Magnetics, 2004, 40, 786-789.	2.1	10
131	Comparison of 3D magnetodynamic formulations in terms of potentials with imposed electric global quantities. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2004, 23, 885-893.	0.9	4
132	Comparison of Preisach and Jiles–Atherton models to take into account hysteresis phenomenon for finite element analysis. Journal of Magnetism and Magnetic Materials, 2003, 261, 139-160.	2.3	97
133	Model with source terms in the constitutive relationship. IEEE Transactions on Magnetics, 2002, 38, 481-484.	2.1	1
134	Determination of losses' local distribution for transformer optimal designing. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2001, 20, 187-204.	0.9	7
135	Adaptive meshing in 3D multi-static problem with variable sources. EPJ Applied Physics, 2000, 12, 187-193.	0.7	1
136	3D computation of a claw pole permanent magnet machine using a scalar potential formulation. EPJ Applied Physics, 2000, 11, 175-182.	0.7	0
137	3D compatible magnetostatic potential formulations coupled with electrical circuits. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2000, 19, 776-786.	0.9	1
138	A direct identification method of the hysteresis model for the design of SMC transformers. IEEE Transactions on Magnetics, 2000, 36, 3466-3469.	2.1	4
139	Calculation of complementary solutions in 2D finite element method application to error estimation. IEEE Transactions on Magnetics, 2000, 36, 1583-1587.	2.1	11
140	Numerical model to discretize source fields in the 3D finite element method. IEEE Transactions on Magnetics, 2000, 36, 676-679.	2.1	31
141	Error estimators in 3D linear magnetostatics. IEEE Transactions on Magnetics, 2000, 36, 1588-1591.	2.1	7
142	Characterisation and modelling of hysteresis phenomenon. Mathematics and Computers in Simulation, 1998, 46, 301-311.	4.4	5
143	Error estimation of finite element solution in nonlinear magnetostatic 2D problems. IEEE Transactions on Magnetics, 1998, 34, 3268-3271.	2.1	13
144	Determination and utilization of the source field in 3D magnetostatic problems. IEEE Transactions on Magnetics, 1998, 34, 2509-2512.	2.1	48

#	Article	IF	CITATIONS
145	Error estimator in linear magnetostatic 2D. EPJ Applied Physics, 1998, 1, 203-209.	0.7	3
146	Comparison between finite element method and magnetic equivalent scheme to model an induction machine. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 1996, 15, 82-87.	0.9	3
147	Theoretical and experimental studies of the effects of the feeding currents on the vibrations of magnetic origin of permanent magnet machines. IEEE Transactions on Magnetics, 1995, 31, 1837-1842.	2.1	5
148	Electro-magneto-mechanical characterizations of the vibration of magnetic origin of electrical machines. IEEE Transactions on Magnetics, 1995, 31, 1892-1895.	2.1	21
149	Méthode de mesure des fréquences propres et des coefficients d'amortissement d'une machine synchrone a aimants permanents. Journal De Physique III, 1994, 4, 1431-1447.	0.3	2
150	Compensation of permanent magnet motors torque ripple by means of current supply waveshapes control determined by finite element method. IEEE Transactions on Magnetics, 1993, 29, 2019-2023.	2.1	41
151	3D Spectral Stochastic Finite Element Method in Electromagnetism. , 0, , .		15
152	Source Field Computation in NDT Applications. , 0, , .		1
153	Influence of the Source Potential Distribution on FEM Potential Formulations in Magnetostatics. , 0, ,		0