List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4216645/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dual-Drug Delivery via the Self-Assembled Conjugates of Choline-Functionalized Graft Copolymers. Materials, 2022, 15, 4457.	2.9	6
2	Micellar Carriers of Active Substances Based on Amphiphilic PEG/PDMS Heterograft Copolymers: Synthesis and Biological Evaluation of Safe Use on Skin. International Journal of Molecular Sciences, 2021, 22, 1202.	4.1	1
3	PDMAEMA/Polyester Miktopolymers: Synthesis via In-Out Approach, Physicochemical Characterization and Enzymatic Degradation. Materials, 2021, 14, 1277.	2.9	4
4	The Influence of Polymer Composition on the Hydrolytic and Enzymatic Degradation of Polyesters and Their Block Copolymers with PDMAEMA. Materials, 2021, 14, 3636.	2.9	4
5	Biological In Vitro Evaluation of PIL Graft Conjugates: Cytotoxicity Characteristics. International Journal of Molecular Sciences, 2021, 22, 7741.	4.1	10
6	Linear Copolymers Based on Choline Ionic Liquid Carrying Anti-Tuberculosis Drugs: Influence of Anion Type on Physicochemical Properties and Drug Release. International Journal of Molecular Sciences, 2021, 22, 284.	4.1	13
7	Synthesis and in vitro cytotoxicity evaluation of star-shaped polymethacrylic conjugates with methotrexate or acitretin as potential antipsoriatic prodrugs. European Journal of Pharmacology, 2020, 866, 172804.	3.5	12
8	Synthesis and Characterization of Ionic Graft Copolymers: Introduction and In Vitro Release of Antibacterial Drug by Anion Exchange. Polymers, 2020, 12, 2159.	4.5	14
9	Grafted polymethacrylate nanocarriers in drug delivery. , 2020, , 271-295.		2
10	PEG Grafted Polymethacrylates Bearing Antioxidants as a New Class of Polymer Conjugates for Application in Cosmetology. Materials, 2020, 13, 3455.	2.9	4
11	Micellar Carriers Based on Amphiphilic PEG/PCL Graft Copolymers for Delivery of Active Substances. Polymers, 2020, 12, 2876.	4.5	9
12	PEG Graft Polymer Carriers of Antioxidants: In Vitro Evaluation for Transdermal Delivery. Pharmaceutics, 2020, 12, 1178.	4.5	6
13	4-n-Butylresorcinol-Based Linear and Graft Polymethacrylates for Arbutin and Vitamins Delivery by Micellar Systems. Polymers, 2020, 12, 330.	4.5	6
14	Temperature and pH-Dependent Response of Poly(Acrylic Acid) and Poly(Acrylic Acid-co-Methyl) Tj ETQq0 0 0 rgf	BT Overloo 4.5	ck
15	Ionic Polymethacrylate Based Delivery Systems: Effect of Carrier Topology and Drug Loading. Pharmaceutics, 2019, 11, 337.	4.5	10
16	Pyranine labeled polymer nanoparticles as fluorescent markers for cell wall staining and imaging of movement within apoplast. Sensors and Actuators B: Chemical, 2019, 297, 126789.	7.8	6
17	Modeling the internal structure of micelles in a delivery system based on 4-arm star shaped polymers. Physica A: Statistical Mechanics and Its Applications, 2019, 531, 121793.	2.6	1

18Choline supported poly(ionic liquid) graft copolymers as novel delivery systems of anionic
pharmaceuticals for anti-inflammatory and anti-coagulant therapy. Scientific Reports, 2019, 9, 14410.3.325

#	Article	IF	CITATIONS
19	Retinol-Containing Graft Copolymers for Delivery of Skin-Curing Agents. Pharmaceutics, 2019, 11, 378.	4.5	9
20	Choline based polymethacrylate matrix with pharmaceutical cations as co-delivery system for antibacterial and anti-inflammatory combined therapy. Journal of Molecular Liquids, 2019, 285, 114-122.	4.9	21
21	Selfâ€assembling waterâ€soluble polymethacrylate–MTX conjugates: The significance of macromolecules architecture on drug conjugation efficiency, the final shape of particles, and drug release. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2476-2487.	3.4	2
22	Functional (mikto)stars and star-comb copolymers from d-gluconolactone derivative: An efficient route for tuning theÂarchitecture and responsiveness to stimuli. Polymer, 2018, 146, 331-343.	3.8	9
23	Cellular response to star-shaped polyacids. Solution behavior and conjugation advantages. Toxicology Letters, 2017, 274, 42-50.	0.8	5
24	Drug delivery via anion exchange of salicylate decorating poly(meth)acrylates based on a pharmaceutical ionic liquid. New Journal of Chemistry, 2017, 41, 12801-12807.	2.8	19
25	Self-assembling polyether- <i>b</i> -polymethacrylate graft copolymers loaded with indomethacin. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 317-325.	3.4	11
26	Modifications of Hydroxyl-Functionalized HEA/HEMA and Their Polymers in the Synthesis of Functional and Graft Copolymers. Current Organic Synthesis, 2017, 14, 798-809.	1.3	9
27	Studies on the radical polymerization of monomeric ionic liquids: nanostructure ordering as a key factor controlling the reaction and properties of nascent polymers. Polymer Chemistry, 2016, 7, 6363-6374.	3.9	13
28	Interactions between fluorescein isothiocyanate and star-shaped polymer carriers studied by isothermal titration calorimetry (ITC). Thermochimica Acta, 2016, 641, 8-13.	2.7	3
29	Design of systems based on 4-armed star-shaped polyacids for indomethacin delivery. New Journal of Chemistry, 2016, 40, 10002-10011.	2.8	16
30	Miktoarm star copolymers from D-(â^')-salicin core aggregated into dandelion-like structures as anticancer drug delivery systems: synthesis, self-assembly and drug release. International Journal of Pharmaceutics, 2016, 515, 515-526.	5.2	18
31	Trimethylammonium-Based Polymethacrylate Ionic Liquids with Tunable Hydrophilicity and Charge Distribution as Carriers of Salicylate Anions. ACS Sustainable Chemistry and Engineering, 2016, 4, 4181-4191.	6.7	25
32	Study on Selfâ€Assembled Wellâ€Defined PEG Graft Copolymers as Efficient Drug‣oaded Nanoparticles for Antiâ€Inflammatory Therapy. Macromolecular Bioscience, 2015, 15, 1616-1624.	4.1	20
33	Designing Drug Conjugates Based on Sugar Decorated V-Shape and Star Polymethacrylates: Influence of Composition and Architecture of Polymeric Carrier. Bioconjugate Chemistry, 2015, 26, 2303-2310.	3.6	13
34	Two decades of molecular brushes by ATRP. Polymer, 2015, 72, 413-421.	3.8	36
35	Water soluble well-defined acidic graft copolymers based on a poly(propylene glycol) macromonomer. RSC Advances, 2015, 5, 3627-3635.	3.6	19
36	Novel self-assembly graft copolymers as carriers for anti-inflammatory drug delivery. International Journal of Pharmaceutics, 2014, 460, 150-157.	5.2	29

#	Article	IF	CITATIONS
37	Fluorescein nanocarriers based on cationic star copolymers with acetal linked sugar cores. Synthesis and biochemical characterization. RSC Advances, 2014, 4, 31904.	3.6	16
38	Synthesis and self-assembly behavior of amphiphilic methyl α-D-glucopyranoside-centered copolymers. Journal of Polymer Research, 2014, 21, 1.	2.4	10
39	Synthesis and characterization of <scp>D</scp> â€(â^')â€Salicineâ€based star copolymers containing pendant carboxyl groups with fluorophore dyes. Journal of Polymer Science Part A, 2014, 52, 2399-2411.	2.3	10
40	Synthesis and investigation of monomodal hydroxy-functionalized PEG methacrylate based copolymers with high polymerization degrees. Modification by "grafting from― Reactive and Functional Polymers, 2014, 82, 33-40.	4.1	28
41	Selfâ€assembling Linear and Star Shaped Poly(ϵâ€caprolactone)/poly[(meth)acrylic acid] Block Copolymers as Carriers of Indomethacin and Quercetin. Macromolecular Bioscience, 2013, 13, 1520-1530.	4.1	21
42	Branched copolymers with biodegradable core and pendant oxirane groups. Polymer Engineering and Science, 2013, 53, 1146-1153.	3.1	6
43	Perfect mixing of immiscible macromolecules at fluid interfaces. Nature Materials, 2013, 12, 735-740.	27.5	60
44	AB, BAB and (AB) ₃ poly(εâ€caprolactone)â€based block copolymers with functionalized poly(meth)acrylate segments. Polymer International, 2013, 62, 693-702.	3.1	5
45	Amphiphilic copolymers with poly(meth)acrylic acid chains "grafted from―caprolactone 2â€(methacryloyloxy)ethyl esterâ€based backbone. Polymers for Advanced Technologies, 2013, 24, 1094-1101.	3.2	4
46	Epoxy functionalized polymethacrylates based on various multifunctional <scp>d</scp> â€glucopyranoside acetals. Journal of Polymer Science Part A, 2013, 51, 2483-2494.	2.3	14
47	Novel Hydroxyl-Functionalized Caprolactone Poly(meth)acrylates Decorated with <i>tert</i> Butyl Groups. Macromolecules, 2012, 45, 4989-4996.	4.8	12
48	High molecular weight diblock and ABA/ABC triblock copolymers of <i>tert</i> â€butyl (meth)acrylate. Polymer International, 2012, 61, 951-958.	3.1	3
49	Atom transfer radical copolymerization of glycidyl methacrylate and methyl methacrylate. Journal of Applied Polymer Science, 2012, 124, 2209-2215.	2.6	31
50	Polymethacrylates with anthryl and carbazolyl groups prepared by atom transfer radical polymerization. Polymer Journal, 2011, 43, 448-454.	2.7	11
51	Methacrylate copolymers with hydroxyl terminated caprolactone chains via ATRP. A route to grafted copolymers. Reactive and Functional Polymers, 2011, 71, 616-624.	4.1	12
52	Atom transfer radical copolymerization of N,N′-dimethylacrylamide with methacrylate-functionalized poly(ethylene oxide). Reactive and Functional Polymers, 2008, 68, 535-543.	4.1	4
53	Synthesis of Graft Copolymers Containing Biodegradable Poly(3-hydroxybutyrate) Chains. Macromolecules, 2007, 40, 1767-1773.	4.8	42
54	Graft copolymers with hydrophilic and hydrophobic polyether side chains. Polymer, 2007, 48, 4966-4973.	3.8	36

#	Article	IF	CITATIONS
55	Electrospray ionization tandem mass spectrometric characterization of the new functional oligo(ether-ester)s structure. Rapid Communications in Mass Spectrometry, 2007, 21, 1019-1024.	1.5	2
56	Graft copolymers with poly(ethylene oxide) segments. Polymer International, 2007, 56, 1469-1498.	3.1	102
57	Densely Heterografted Brush Macromolecules with Crystallizable Grafts. Synthesis and Bulk Properties. Macromolecules, 2006, 39, 584-593.	4.8	131
58	Gradient graft copolymers derived from PEO-based macromonomers. Journal of Polymer Science Part A, 2006, 44, 1347-1356.	2.3	40
59	Initiation Efficiency in the Synthesis of Molecular Brushes by Grafting from via Atom Transfer Radical Polymerization. Macromolecules, 2005, 38, 702-708.	4.8	224
60	PDMSâ^'PEO Densely Grafted Copolymers. Macromolecules, 2005, 38, 8687-8693.	4.8	103
61	Synthesis and polymerization of a novel oxirane bearing a cyclic acetal of salicylaldehyde chain moiety. Polymer International, 2004, 53, 364-369.	3.1	1
62	Super soft elastomers as ionic conductors. Polymer, 2004, 45, 6333-6339.	3.8	62
63	How dense are cylindrical brushes grafted from a multifunctional macroinitiator?. Polymer, 2004, 45, 8173-8179.	3.8	140
64	Heterografted PEO–PnBA brush copolymers. Polymer, 2003, 44, 6863-6871.	3.8	108
65	Densely-Grafted and Double-Grafted PEO Brushes via ATRP. A Route to Soft Elastomers. Macromolecules, 2003, 36, 6746-6755.	4.8	322
66	Stereoblock Copolymers and Tacticity Control in Controlled/Living Radical Polymerization. Journal of the American Chemical Society, 2003, 125, 6986-6993.	13.7	264
67	Copolymerization of N,N-Dimethylacrylamide with n-Butyl Acrylate via Atom Transfer Radical Polymerization. Macromolecules, 2003, 36, 2598-2603.	4.8	85
68	Preparation of Segmented Copolymers in the Presence of an Immobilized/Soluble Hybrid ATRP Catalyst System. Macromolecules, 2003, 36, 27-35.	4.8	36
69	Analysis of the end groups of poly(methyl methacrylate). Macromolecular Symposia, 2002, 184, 325-338.	0.7	4
70	Structure of poly(propylene oxide) obtained in the presence of Kâ^', K+(15-crown-5)2. European Polymer Journal, 2002, 38, 1065-1070.	5.4	9
71	Luminescence properties of novel substituted polyethers. , 2000, , .		1
72	Study of the structure of poly(methyl methacrylate) obtained in the presence of potassium hydride. Rapid Communications in Mass Spectrometry, 2000, 14, 2170-2174.	1.5	7

#	Article	IF	CITATIONS
73	Electrospray ionization tandem mass spectrometry for poly(propylene oxide) starting and end group analysis. , 1999, 13, 2469-2473.		10
74	Influence of substituent on the polymerization of oxiranes by potassium hydride. Macromolecular Chemistry and Physics, 1999, 200, 2467-2470.	2.2	31
75	Influence of substituent on the polymerization of oxiranes by potassium hydride. Macromolecular Chemistry and Physics, 1999, 200, 2467-2470.	2.2	4
76	Influence of the kind of crown ether on the heterogeneous polymerization of propylene oxide in the presence of potassium hydride. Macromolecular Chemistry and Physics, 1998, 199, 175-177.	2.2	6
77	Influence of the kind of crown ether on the heterogeneous polymerization of propylene oxide in the presence of potassium hydride. Macromolecular Chemistry and Physics, 1998, 199, 175-177.	2.2	1
78	Polymerization of oxiranes in the presence of potassium hydride. Polimery, 1998, 43, 443-448.	0.7	5
79	Potassium hydride — the new initiator for anionic polymerization of oxiranes. Macromolecular Rapid Communications, 1996, 17, 787-793.	3.9	22
80	Influence of the crown ether concentration and the addition of tert-butyl alcohol on anionic polymerization of (butoxymethyl)oxirane initiated by potassium tert-butoxide. Macromolecular Chemistry and Physics, 1995, 196, 1295-1300.	2.2	18
81	Influence of the kind of crown ether on the anionic polymerization of (phenoxymethyl)oxirane initiated by potassium tert-butoxide. Macromolecular Chemistry and Physics, 1995, 196, 1301-1306.	2.2	11