Rosario Ceravolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/421638/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Condition Assessment of an Early Thin Reinforced Concrete Vaulted System. International Journal of Architectural Heritage, 2023, 17, 343-361.	3.1	3
2	Application of the Instantaneous Rényi Entropy for Real-Time Damage Detection. Lecture Notes in Civil Engineering, 2023, , 3-12.	0.4	1
3	Combining satellite geophysical data with continuous on-site measurements for monitoring the dynamic parameters of civil structures. Scientific Reports, 2022, 12, 2275.	3.3	3
4	Interferometric Satellite Data in Structural Health Monitoring: An Application to the Effects of the Construction of a Subway Line in the Urban Area of Rome. Applied Sciences (Switzerland), 2022, 12, 1658.	2.5	12
5	Modal Identification of Structures with Interacting Diaphragms. Applied Sciences (Switzerland), 2022, 12, 4030.	2.5	3
6	AE propagation velocity calculation for stiffness estimation in Pier Luigi Nervi's concrete structures. Curved and Layered Structures, 2021, 8, 109-118.	1.3	3
7	A multiâ€objective genetic algorithm strategy for robust optimal sensor placement. Computer-Aided Civil and Infrastructure Engineering, 2021, 36, 1185-1202.	9.8	45
8	Detection and Localization of Multiple Damages through Entropy in Information Theory. Applied Sciences (Switzerland), 2021, 11, 5773.	2.5	16
9	An Automatic Modal Identification Procedure for the Permanent Dynamic Monitoring of the Sanctuary of Vicoforte. International Journal of Architectural Heritage, 2020, 14, 630-644.	3.1	25
10	Ensemble Technique for Machine Learning with Application to Monitoring of Heritage Structures. Lecture Notes in Mechanical Engineering, 2020, , 333-349.	0.4	1
11	Thermoelastic finite element model updating with application to monumental buildings. Computer-Aided Civil and Infrastructure Engineering, 2020, 35, 628-642.	9.8	14
12	Bayesian Calibration of Hysteretic Parameters with Consideration of the Model Discrepancy for Use in Seismic Structural Health Monitoring. Applied Sciences (Switzerland), 2020, 10, 5813.	2.5	4
13	An optimal sensor placement strategy for reliable expansion of mode shapes under measurement noise and modelling error. Journal of Sound and Vibration, 2020, 487, 115511.	3.9	9
14	Seismic damage identification by fitting the nonlinear and hysteretic dynamic response of monitored buildings. Journal of Civil Structural Health Monitoring, 2020, 10, 457-469.	3.9	14
15	Flexural band gaps and response attenuation of periodic piping systems enhanced with localized and distributed resonators. Scientific Reports, 2020, 10, 85.	3.3	24
16	In-Operation Experimental Modal Analysis of a Three Span Open-Spandrel RC Arch Bridge. Structural Integrity, 2020, , 491-499.	1.4	1
17	Synergistic and combinatorial optimization of finite element models for monitored buildings. Structural Control and Health Monitoring, 2019, 26, e2403.	4.0	3
18	Use of the cointegration strategies to remove environmental effects from data acquired on historical buildings. Engineering Structures, 2019, 183, 1014-1026.	5.3	36

ROSARIO CERAVOLO

#	Article	IF	CITATIONS
19	Seismic Structural Health Monitoring of Cultural Heritage Structures. Springer Tracts in Civil Engineering, 2019, , 51-85.	0.5	13
20	Territorial Resilience: Toward a Proactive Meaning for Spatial Planning. Sustainability, 2019, 11, 2286.	3.2	47
21	Spectral entropy of acceleration data for damage detection in masonry buildings affected by seismic sequences. Construction and Building Materials, 2019, 210, 525-539.	7.2	13
22	The Teager-Kaiser Energy Cepstral Coefficients as an Effective Structural Health Monitoring Tool. Applied Sciences (Switzerland), 2019, 9, 5064.	2.5	30
23	DISCUSSION ON DATA RECORDED BY THE ITALIAN STRUCTURAL SEISMIC MONITORING NETWORK ON THREE MASONRY STRUCTURES HIT BY THE 2016-2017 CENTRAL ITALY EARTHQUAKE. , 2019, , .		12
24	Measurement of weak non-linear response of Kevlar® fibre damaged by UV exposure. Composite Structures, 2018, 184, 807-813.	5.8	7
25	Semiactive control of rigid blocks under earthquake excitation. Earthquake Engineering and Structural Dynamics, 2018, 47, 738-756.	4.4	4
26	Sensor Placement Strategies for the Seismic Monitoring of Complex Vaulted Structures of the Modern Architectural Heritage. Shock and Vibration, 2018, 2018, 1-14.	0.6	12
27	Use of Spectral Entropy for Damage Detection in Masonry Buildings in the Presence of Mild Seismicity. Proceedings (mdpi), 2018, 2, 432.	0.2	6
28	Damage detection in elastic properties of masonry bridges using coda wave interferometry. Structural Control and Health Monitoring, 2017, 24, e1976.	4.0	14
29	Comparison of semi-active control strategies for rocking objects under pulse and harmonic excitations. Mechanical Systems and Signal Processing, 2017, 90, 175-188.	8.0	26
30	Damage scenario-driven strategies for the seismic monitoring of XX century spatial structures with application to Pier Luigi Nervi's Turin Exhibition Centre. Engineering Structures, 2017, 137, 256-267.	5.3	15
31	Monitoring of masonry historical constructions: 10Âyears of static monitoring of the world's largest oval dome. Structural Control and Health Monitoring, 2017, 24, e1988.	4.0	28
32	Strategy for the maintenance and monitoring of electric road infrastructures based on recursive lifetime prediction. Journal of Civil Structural Health Monitoring, 2017, 7, 303-314.	3.9	1
33	Dynamic investigation on the Mirandola bell tower in post-earthquake scenarios. Bulletin of Earthquake Engineering, 2017, 15, 313-337.	4.1	46
34	Amplitude dependence of equivalent modal parameters in monitored buildings during earthquake swarms. Earthquake Engineering and Structural Dynamics, 2017, 46, 2399-2417.	4.4	33
35	Issues on the modal characterization of large monumental structures with complex dynamic interactions. Procedia Engineering, 2017, 199, 3344-3349.	1.2	1
36	Nonlinearity detection and dynamic characterisation of aramid and silicon carbide fibres. International Journal of Lifecycle Performance Engineering, 2016, 2, 79.	0.2	1

ROSARIO CERAVOLO

#	Article	IF	CITATIONS
37	Semi-active control of the rocking motion of monolithic art objects. Journal of Sound and Vibration, 2016, 374, 1-16.	3.9	33
38	A Computational Methodology for Assessing the Timeâ€Dependent Structural Performance of Electric Road Infrastructures. Computer-Aided Civil and Infrastructure Engineering, 2016, 31, 701-716.	9.8	17
39	Vibration-Based Monitoring and Diagnosis of Cultural Heritage: A Methodological Discussion in Three Examples. International Journal of Architectural Heritage, 2016, 10, 375-395.	3.1	70
40	Global Sensitivityâ€Based Model Updating for Heritage Structures. Computer-Aided Civil and Infrastructure Engineering, 2015, 30, 620-635.	9.8	66
41	Time-dependent estimators for on-line monitoring of full-scale structures under ambient excitation. Mechanical Systems and Signal Processing, 2015, 60-61, 166-181.	8.0	5
42	ADAPTIVE CONTROL OF THE ROCKING MOTION OF ART OBJECTS., 2015, , .		2
43	Identification, Model Updating, and Validation of a Steel Twin Deck Curved Cableâ€Stayed Footbridge. Computer-Aided Civil and Infrastructure Engineering, 2014, 29, 703-722.	9.8	43
44	Comparison of restoring force models for the identification of structures with hysteresis and degradation. Journal of Sound and Vibration, 2013, 332, 6982-6999.	3.9	27
45	Time Domain Identification of Structures: Comparative Analysis of Output-Only Methods. Journal of Engineering Mechanics - ASCE, 2013, 139, 537-544.	2.9	42
46	Dynamic characterization of complex bridge structures with passive control systems. Structural Control and Health Monitoring, 2012, 19, 511-534.	4.0	13
47	Identification of the hysteretic behaviour of a partialâ€strength steel–concrete momentâ€resisting frame structure subject to pseudodynamic tests. Earthquake Engineering and Structural Dynamics, 2012, 41, 1883-1903.	4.4	21
48	Dynamic Characterization of Complex Masonry Structures: The Sanctuary of Vicoforte. International Journal of Architectural Heritage, 2011, 5, 296-314.	3.1	34
49	Instantaneous identification of localized non-linearities in steel framed structures. Mecanique Et Industries, 2010, 11, 105-116.	0.2	2
50	Experimental and Numerical Analysis of a Two-Span Model Masonry Arch Bridge Subjected to Pier Scour. Advanced Materials Research, 2010, 133-134, 301-306.	0.3	1
51	Instantaneous Identification of Degrading Hysteretic Oscillators Under Earthquake Excitation. Structural Health Monitoring, 2010, 9, 447-464.	7.5	8
52	Role and Application of Testing and Computational Techniques in Seismic Engineering. Geotechnical, Geological and Earthquake Engineering, 2010, , 407-418.	0.2	0
53	Modal Identification of an Experimental Model of Masonry Arch Bridge. Key Engineering Materials, 2009, 413-414, 707-714.	0.4	10
54	Non-Linear Identification of a RC Element Using Time-Frequency Instantaneous Estimators. Key Engineering Materials, 2009, 413-414, 531-538.	0.4	0

ROSARIO CERAVOLO

#	Article	IF	CITATIONS
55	Problems in applying code-specified capacity design procedures to seismic design of tall piers. Engineering Structures, 2009, 31, 1811-1821.	5.3	29
56	Symptom-based reliability and generalized repairing cost in monitored bridges. Reliability Engineering and System Safety, 2009, 94, 1331-1339.	8.9	11
57	Change in dynamic parameters and safety assessment ofÂcivil structures. Mechanics of Time-Dependent Materials, 2008, 12, 365-376.	4.4	6
58	Instantaneous Identification of Bouc-Wen-Type Hysteretic Systems from Seismic Response Data. Key Engineering Materials, 2007, 347, 331-338.	0.4	13
59	Instantaneous Identification of Polynomial Nonlinearity Based on Volterra Series Representation. Key Engineering Materials, 2005, 293-294, 703-710.	0.4	9
60	Use of instantaneous estimators for the evaluation of structural damping. Journal of Sound and Vibration, 2004, 274, 385-401.	3.9	32
61	Developments and Comparisons on the Definition of an Instantaneous Damping Estimator for Structures under Natural Excitation. Key Engineering Materials, 2001, 204-205, 231-240.	0.4	9
62	The use of wind excitation in structural identification. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76, 709-718.	3.9	5
63	Time-Frequency and Ambiguity Function Approaches in Structural Identification. Journal of Engineering Mechanics - ASCE, 1997, 123, 1260-1267.	2.9	15
64	Assessment of Structural Reliability of Bridge Beams Based on Measured Symptoms. Key Engineering Materials, 0, 569-570, 358-365.	0.4	1
65	Unscented Kalman Filter for Non-Linear Identification of a New Prototype of Bidirectional Tuned Vibration Absorber: A Numerical Investigation. Key Engineering Materials, 0, 569-570, 948-955.	0.4	2
66	Damage Detection and Localisation in Buried Pipelines using Entropy in Information Theory. , 0, , .		2