
## Norberto Manfredi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4216377/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Di-branched di-anchoring organic dyes for dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 1094.                                                                                              | 30.8 | 188       |
| 2  | Multiâ€Branched Multiâ€Anchoring Metalâ€Free Dyes for Dyeâ€Sensitized Solar Cells. European Journal of<br>Organic Chemistry, 2014, 2014, 7069-7086.                                                                 | 2.4  | 109       |
| 3  | Electron-rich heteroaromatic conjugated bipyridine based ruthenium sensitizer for efficient dye-sensitized solar cells. Chemical Communications, 2008, , 5318.                                                      | 4.1  | 107       |
| 4  | Dyeâ€Sensitized Solar Cells that use an Aqueous Choline Chlorideâ€Based Deep Eutectic Solvent as<br>Effective Electrolyte Solution. Energy Technology, 2017, 5, 345-353.                                            | 3.8  | 80        |
| 5  | Dyeâ€Sensitized Solar Hydrogen Production: The Emerging Role of Metalâ€Free Organic Sensitizers.<br>European Journal of Organic Chemistry, 2016, 2016, 5194-5215.                                                   | 2.4  | 77        |
| 6  | Electron-rich heteroaromatic conjugated polypyridine ruthenium sensitizers for dye-sensitized solar cells. Dalton Transactions, 2011, 40, 12421.                                                                    | 3.3  | 70        |
| 7  | Panchromatic ruthenium sensitizer based on electron-rich heteroarylvinylene π-conjugated quaterpyridine for dye-sensitized solar cells. Dalton Transactions, 2011, 40, 234-242.                                     | 3.3  | 57        |
| 8  | Dye-sensitized photocatalytic hydrogen production: distinct activity in a glucose derivative of a phenothiazine dye. Chemical Communications, 2016, 52, 6977-6980.                                                  | 4.1  | 55        |
| 9  | Bisâ€Donor–Bisâ€Acceptor Tribranched Organic Sensitizers for Dye‣ensitized Solar Cells. European<br>Journal of Organic Chemistry, 2011, 2011, 6195-6205.                                                            | 2.4  | 50        |
| 10 | Tuning Thiopheneâ€Based Phenothiazines for Stable Photocatalytic Hydrogen Production.<br>ChemSusChem, 2015, 8, 4216-4228.                                                                                           | 6.8  | 48        |
| 11 | Dye-Sensitized Photocatalytic Hydrogen Generation: Efficiency Enhancement by Organic<br>Photosensitizer–Coadsorbent Intermolecular Interaction. ACS Energy Letters, 2018, 3, 85-91.                                 | 17.4 | 48        |
| 12 | Designing Ecoâ€Sustainable Dyeâ€Sensitized Solar Cells by the Use of a Mentholâ€Based Hydrophobic<br>Eutectic Solvent as an Effective Electrolyte Medium. Chemistry - A European Journal, 2018, 24,<br>17656-17659. | 3.3  | 47        |
| 13 | Secondâ€Order Nonlinear Optical Activity of Dipolar Chromophores Based on Pyrroleâ€Hydrazono<br>Donor Moieties. Chemistry - A European Journal, 2009, 15, 6175-6185.                                                | 3.3  | 45        |
| 14 | Thiocyanate-free cyclometalated ruthenium sensitizers for solar cells based on heteroaromatic-substituted 2-arylpyridines. Dalton Transactions, 2012, 41, 11731.                                                    | 3.3  | 39        |
| 15 | A new thiocyanate-free cyclometallated ruthenium complex for dye-sensitized solar cells: Beneficial effects of substitution on the cyclometallated ligand. Journal of Organometallic Chemistry, 2012, 714, 88-93.   | 1.8  | 38        |
| 16 | SERS Properties of Gold Nanorods at Resonance with Molecular, Transverse, and Longitudinal Plasmon Excitations. Plasmonics, 2014, 9, 581-593.                                                                       | 3.4  | 36        |
| 17 | Thiocyanate-free ruthenium(II) 2,2′-bipyridyl complexes for dye-sensitized solar cells. Polyhedron, 2014,<br>82, 50-56.                                                                                             | 2.2  | 36        |
| 18 | Spectroscopic Investigation of Artificial Opals Infiltrated with a Heteroaromatic Quadrupolar Dye.<br>Journal of Physical Chemistry C, 2010, 114, 2403-2413.                                                        | 3.1  | 30        |

Norberto Manfredi

| #  | Article                                                                                                                                                                                               | IF            | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|
| 19 | Quaterpyridine Ligands for Panchromatic Ru(II) Dye Sensitizers. Journal of Organic Chemistry, 2012, 77, 7945-7956.                                                                                    | 3.2           | 30        |
| 20 | Molecular Organic Sensitizers for Photoelectrochemical Water Splitting. European Journal of<br>Inorganic Chemistry, 2020, 2020, 978-999.                                                              | 2.0           | 29        |
| 21 | Pyridineâ^'EDOT Heteroaryleneâ^'Vinylene Donorâ^'Acceptor Polymers. Macromolecules, 2010, 43,<br>9698-9713.                                                                                           | 4.8           | 28        |
| 22 | A vinyleneâ€linked benzo[1,2â€ <i>b</i> :4,5â€ <i>b'</i> ]dithiopheneâ€2,1,3â€benzothiadiazole lowâ€bandgap po<br>Journal of Polymer Science Part A, 2012, 50, 2829-2840.                             | lymer.<br>2.3 | 25        |
| 23 | Benzodithiophene based organic dyes for DSSC: Effect of alkyl chain substitution on dye efficiency.<br>Dyes and Pigments, 2015, 121, 351-362.                                                         | 3.7           | 25        |
| 24 | A D-π-A organic dye – Reduced graphene oxide covalent dyad as a new concept photosensitizer for<br>light harvesting applications. Carbon, 2017, 115, 746-753.                                         | 10.3          | 25        |
| 25 | Ruthenium oxyquinolate complexes for dye-sensitized solar cells. Inorganica Chimica Acta, 2013, 405, 98-104.                                                                                          | 2.4           | 24        |
| 26 | Electrolytes for quasi solid-state dye-sensitized solar cells based on block copolymers. Journal of<br>Polymer Science Part A, 2014, 52, 719-727.                                                     | 2.3           | 24        |
| 27 | Engineering TiO <sub>2</sub> /Perovskite Planar Heterojunction for Hysteresis‣ess Solar Cells.<br>Advanced Materials Interfaces, 2016, 3, 1600493.                                                    | 3.7           | 24        |
| 28 | Enhanced photocatalytic hydrogen generation using carbazole-based sensitizers. Sustainable Energy<br>and Fuels, 2017, 1, 694-698.                                                                     | 4.9           | 23        |
| 29 | Ecoâ€Friendly Sugarâ€Based Natural Deep Eutectic Solvents as Effective Electrolyte Solutions for Dyeâ€Sensitized Solar Cells. ChemElectroChem, 2020, 7, 1707-1712.                                    | 3.4           | 23        |
| 30 | Deep Eutectic Solvents in Solar Energy Technologies. Molecules, 2022, 27, 709.                                                                                                                        | 3.8           | 23        |
| 31 | A carbon doped anatase TiO2 as a promising semiconducting layer in Ru-dyes based dye-sensitized solar cells. Inorganica Chimica Acta, 2019, 489, 263-268.                                             | 2.4           | 19        |
| 32 | Heteroaromatic Donor–Acceptor π onjugated 2,2′â€Bipyridines. European Journal of Organic Chemistry,<br>2008, 2008, 5047-5054.                                                                         | 2.4           | 18        |
| 33 | Photophysical and Electrochemical Properties of Thiopheneâ€Based 2â€Arylpyridines. European Journal of Organic Chemistry, 2011, 2011, 5587-5598.                                                      | 2.4           | 16        |
| 34 | Molecular Level Factors Affecting the Efficiency of Organic Chromophores for p-Type Dye Sensitized<br>Solar Cells. Energies, 2016, 9, 33.                                                             | 3.1           | 14        |
| 35 | An unconventional helical push-pull system for solar cells. Dyes and Pigments, 2019, 161, 382-388.                                                                                                    | 3.7           | 12        |
| 36 | Performance enhancement of a dye-sensitized solar cell by peripheral aromatic and heteroaromatic functionalization in di-branched organic sensitizers. New Journal of Chemistry, 2018, 42, 9281-9290. | 2.8           | 11        |

Norberto Manfredi

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Vinylene-linked pyridine-pyrrole donor–acceptor conjugated polymers. Synthetic Metals, 2011, 161,<br>763-769.                                                                                             | 3.9 | 10        |
| 38 | Organic Sensitizers for Photoanode Water Splitting in Dyeâ€Sensitized Photoelectrochemical Cells.<br>ChemElectroChem, 2018, 5, 2395-2402.                                                                 | 3.4 | 10        |
| 39 | Ferrocene Derivatives Functionalized with Donor/Acceptor (Hetero)Aromatic Substituents: Tuning of Redox Properties. Energies, 2020, 13, 3937.                                                             | 3.1 | 10        |
| 40 | Design of Ru(II) sensitizers endowed by three anchoring units for adsorption mode and light harvesting optimization. Thin Solid Films, 2014, 560, 86-93.                                                  | 1.8 | 9         |
| 41 | Molecular Doping for Hole Transporting Materials in Hybrid Perovskite Solar Cells. Metals, 2020, 10,<br>14.                                                                                               | 2.3 | 9         |
| 42 | Electrochemical and Spectroelectrochemical Properties of a New Donor–Acceptor Polymer<br>Containing 3,4-Dialkoxythiophene and 2,1,3-Benzothiadiazole Units. Polymers, 2013, 5, 1068-1080.                 | 4.5 | 8         |
| 43 | Dye-sensitized photocatalytic and photoelectrochemical hydrogen production through water splitting. Rendiconti Lincei, 2019, 30, 469-483.                                                                 | 2.2 | 8         |
| 44 | Multibranched Calix[4]areneâ€Based Sensitizers for Efficient Photocatalytic Hydrogen Production.<br>European Journal of Organic Chemistry, 2021, 2021, 284-288.                                           | 2.4 | 7         |
| 45 | Tuning optical properties of opal photonic crystals by structural defects engineering. Journal of the<br>European Optical Society-Rapid Publications, 0, 4, .                                             | 1.9 | 5         |
| 46 | Practical twoâ€photonâ€absorption cross sections and spectra of eosin and hematoxylin. Journal of<br>Biophotonics, 2020, 13, e202000141.                                                                  | 2.3 | 5         |
| 47 | Calix[4]arene-based molecular photosensitizers for sustainable hydrogen production and other solar applications. Current Opinion in Green and Sustainable Chemistry, 2021, 32, 100534.                    | 5.9 | 5         |
| 48 | Dye–catalyst dyads for photoelectrochemical water oxidation based on metal-free sensitizers. RSC<br>Advances, 2021, 11, 5311-5319.                                                                        | 3.6 | 4         |
| 49 | Helical push-pull systems for solar cells: Electrochemical, computational, photovoltaic and NMR<br>data. Data in Brief, 2018, 21, 2339-2349.                                                              | 1.0 | 3         |
| 50 | Photovoltaic characterization of di-branched organic sensitizers for DSSCs. Data in Brief, 2019, 25, 104167.                                                                                              | 1.0 | 1         |
| 51 | Lifetime Shortening and Fast Energyâ€Tansfer Processes upon Dimerization of a Aâ€i€â€Dâ€ï€â€A Molecule.<br>ChemPhysChem, 2014, 15, 310-319.                                                               | 2.1 | 0         |
| 52 | Front Cover: Dye-Sensitized Solar Hydrogen Production: The Emerging Role of Metal-Free Organic<br>Sensitizers (Eur. J. Org. Chem. 31/2016). European Journal of Organic Chemistry, 2016, 2016, 5189-5189. | 2.4 | 0         |
| 53 | Introducing eco-friendly hydrophilic and hydrophobic deep eutectic solvent electrolyte solutions for dye-sensitized solar cells. , 0, , .                                                                 |     | 0         |
| 54 | Low dye content efficient dye-sensitized solar cells using carbon doped-titania paste from convenient<br>green synthetic process. Inorganica Chimica Acta, 2021, 525, 120487.                             | 2.4 | 0         |