Hongjian Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4216112/publications.pdf

Version: 2024-02-01

43 papers

3,111 citations

236833 25 h-index 243529 44 g-index

45 all docs

45 docs citations

45 times ranked

1889 citing authors

#	Article	IF	CITATIONS
1	Effects of CO2 curing treatment on alkali-silica reaction of mortars containing glass aggregate. Construction and Building Materials, 2022, 323, 126637.	3.2	8
2	Relationship between water transport behaviour and interlayer voids of 3D printed concrete. Construction and Building Materials, 2022, 326, 126731.	3.2	24
3	Effects of Cement Mortar Characteristics on Aggregate-Bed 3D Concrete Printing. Additive Manufacturing, 2022, , 103024.	1.7	1
4	The interpenetration polymer network in a cement paste–waterborne epoxy system. Cement and Concrete Research, 2021, 139, 106236.	4.6	52
5	Performance of mortar incorporating calcined marine clays with varying kaolinite content. Journal of Cleaner Production, 2021, 282, 124513.	4.6	49
6	Hardened properties and durability of large-scale 3D printed cement-based materials. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	65
7	Development of a new nano modified cement based adhesive for FRP strengthened RC members. Construction and Building Materials, 2021, 277, 122318.	3.2	18
8	Bond performance of repair mortar made with magnesium phosphate cement and ferroaluminate cement. Construction and Building Materials, 2021, 279, 122398.	3.2	22
9	Research on the toughening mechanism of modified nano-silica and silane molecular cages in the multi-scale microfracture of cement-epoxy composite. Cement and Concrete Composites, 2021, 119, 104027.	4.6	10
10	Carbon capture in ultra-high performance concrete using pressurized CO2 curing. Construction and Building Materials, 2021, 288, 123076.	3.2	38
11	Long-Term Influence of Nanosilica on the Microstructures, Strength, and Durability of High-Volume Fly Ash Mortar. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	9
12	Quaternary blended limestone-calcined clay cement concrete incorporating fly ash. Cement and Concrete Composites, 2021, 123, 104174.	4.6	25
13	Microstructural characterization of 3D printed concrete. Journal of Building Engineering, 2021, 44, 102948.	1.6	31
14	Hydration, strength and microstructure evaluation of eco-friendly mortar containing waste marine clay. Journal of Cleaner Production, 2020, 272, 122784.	4.6	19
15	Aggregate-bed 3D concrete printing with cement paste binder. Cement and Concrete Research, 2020, 136, 106169.	4.6	60
16	Marine clay in ultra-high performance concrete for filler substitution. Construction and Building Materials, 2020, 263, 120250.	3.2	31
17	Graphene reinforced cement composites: A review. Construction and Building Materials, 2020, 265, 120312.	3.2	101
18	Potential of Marine Clay for Cement Replacement and Pozzolanic Additive in Concrete. RILEM Bookseries, 2020, , 57-65.	0.2	1

#	Article	IF	CITATIONS
19	High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute. Construction and Building Materials, 2020, 264, 120152.	3.2	90
20	High performance cement composites with colloidal nano-silica. Construction and Building Materials, 2019, 224, 317-325.	3.2	51
21	Functionally layered cement composites against projectile impact. International Journal of Impact Engineering, 2019, 133, 103338.	2.4	12
22	Properties of ultra-lightweight cement composites with nano-silica. Construction and Building Materials, 2019, 199, 696-704.	3.2	77
23	Dispersion and stability of graphene nanoplatelet in water and its influence on cement composites. Construction and Building Materials, 2018, 167, 403-413.	3.2	112
24	Value-added utilization of marine clay as cement replacement for sustainable concrete production. Journal of Cleaner Production, 2018, 198, 867-873.	4.6	95
25	Properties of high volume glass powder concrete. Cement and Concrete Composites, 2017, 75, 22-29.	4.6	221
26	Simulation on the Self-Compacting Concrete by an Enhanced Lagrangian Particle Method. Advances in Materials Science and Engineering, 2016, 2016, 1-11.	1.0	4
27	Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet. Cement and Concrete Research, 2016, 83, 114-123.	4.6	216
28	Enhancement of barrier properties of cement mortar with graphene nanoplatelet. Cement and Concrete Research, 2015, 76, 10-19.	4.6	244
29	Transport Properties of Concrete with Glass Powder as Supplementary Cementitious Material. ACI Materials Journal, 2015, 112, .	0.3	16
30	A model to estimate the durability performance of both normal and light-weight concrete. Construction and Building Materials, 2015, 80, 255-261.	3.2	37
31	Effect of nano-silica on the mechanical and transport properties of lightweight concrete. Construction and Building Materials, 2015, 82, 114-122.	3.2	107
32	Cellular cement composites against projectile impact. International Journal of Impact Engineering, 2015, 86, 13-26.	2.4	16
33	A two-scale computational model for thermomechanical analysis of reinforced concrete frames. Engineering Structures, 2015, 105, 137-151.	2.6	9
34	Waste Glass Powder as Cement Replacement in Concrete. Journal of Advanced Concrete Technology, 2014, 12, 468-477.	0.8	121
35	Strain and damage self-sensing cement composites with conductive graphene nanoplatelet. Proceedings of SPIE, 2014, , .	0.8	14
36	Durability performances of concrete with nano-silica. Construction and Building Materials, 2014, 73, 705-712.	3.2	310

#	Article	IF	CITATIONS
37	Use of 2D Graphene Nanoplatelets (GNP) in cement composites for structural health evaluation. Composites Part B: Engineering, 2014, 67, 555-563.	5.9	189
38	Effect of particle size on alkali–silica reaction in recycled glass mortars. Construction and Building Materials, 2014, 66, 275-285.	3.2	103
39	Use of waste glass as sand in mortar: Part I – Fresh, mechanical and durability properties. Cement and Concrete Composites, 2013, 35, 109-117.	4.6	260
40	Use of waste glass as sand in mortar: Part II – Alkali–silica reaction and mitigation methods. Cement and Concrete Composites, 2013, 35, 118-126.	4.6	189
41	Smart multifunctional cement mortar containing graphite nanoplatelet. Proceedings of SPIE, 2013, , .	0.8	26
42	Sandless concrete with fly ash as supplementary cementing material. Journal of Sustainable Cement-Based Materials, 2013, 2, 238-249.	1.7	9
43	Towards a sustainable concrete: "sandless―concrete. Science and Engineering of Composite Materials, 2011, 18, 99-107.	0.6	4