
Kurt Ballmer-Hofer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4215767/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production and Biochemical Characterization of Dimeric Recombinant Gremlin-1. International Journal of Molecular Sciences, 2022, 23, 1151.	1.8	3
2	Characterization of a drug-targetable allosteric site regulating vascular endothelial growth factor signaling. Angiogenesis, 2018, 21, 533-543.	3.7	21
3	VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis. Brain, Behavior, and Immunity, 2018, 74, 49-67.	2.0	31
4	Vascular Endothelial Growth Factor, from Basic Research to Clinical Applications. International Journal of Molecular Sciences, 2018, 19, 3750.	1.8	12
5	Diabetesâ€induced microvascular complications at the level of the spinal cord: a contributing factor in diabetic neuropathic pain. Journal of Physiology, 2018, 596, 3675-3693.	1.3	26
6	ScFvs as Allosteric Inhibitors of VEGFR-2: Novel Tools to Harness VEGF Signaling. International Journal of Molecular Sciences, 2018, 19, 1334.	1.8	4
7	Structure of the Full-length VEGFR-1 Extracellular Domain in Complex with VEGF-A. Structure, 2017, 25, 341-352.	1.6	77
8	Monomeric gremlin is a novel vascular endothelial growth factor receptor-2 antagonist. Oncotarget, 2016, 7, 35353-35368.	0.8	34
9	VEGFR-2 conformational switch in response to ligand binding. ELife, 2016, 5, e13876.	2.8	94
10	VEGFR2 pY949 signalling regulates adherens junction integrity and metastatic spread. Nature Communications, 2016, 7, 11017.	5.8	111
11	Highly efficient baculovirus-mediated multigene delivery in primary cells. Nature Communications, 2016, 7, 11529.	5.8	83
12	Subcellular object quantification with Squassh3C and SquasshAnalyst. BioTechniques, 2015, 59, 309-312.	0.8	7
13	Vascular Endothelial Growth Factor-A165b Is Protective and Restores Endothelial Glycocalyx in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2015, 26, 1889-1904.	3.0	112
14	Functional and structural characterization of the kinase insert and the carboxy terminal domain in VEGF receptor 2 activation. FASEB Journal, 2014, 28, 4914-4923.	0.2	14
15	Cell Lines Expressing Recombinant Transmembrane Domain–Activated Receptor Kinases as Tools for Drug Discovery. Journal of Biomolecular Screening, 2014, 19, 1350-1361.	2.6	3
16	High-level secretion of recombinant full-length streptavidin in Pichia pastoris and its application to enantioselective catalysis. Protein Expression and Purification, 2014, 93, 54-62.	0.6	11
17	Structural and Functional Characterization of Alternative Transmembrane Domain Conformations in VEGF Receptor 2 Activation. Structure, 2014, 22, 1077-1089.	1.6	43
18	Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia. Neurobiology of Disease, 2014, 71, 245-259.	2.1	65

#	Article	IF	CITATIONS
19	Finding New Partnerships: The Function of Individual Extracellular Receptor Domains in Angiogenic Signalling by VEGF Receptors. , 2014, , 47-75.		0
20	Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12960-12965.	3.3	84
21	Targeting Extracellular Domains D4 and D7 of Vascular Endothelial Growth Factor Receptor 2 Reveals Allosteric Receptor Regulatory Sites. Molecular and Cellular Biology, 2012, 32, 3802-3813.	1.1	38
22	Thermodynamic and structural description of allosterically regulated VEGFR-2 dimerization. Blood, 2012, 119, 1781-1788.	0.6	108
23	Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output. Blood, 2011, 118, 816-826.	0.6	178
24	Structural determinants of vascular endothelial growth factor-D receptor binding and specificity. Blood, 2011, 117, 1507-1515.	0.6	76
25	The CMT4B disease-causing proteins MTMR2 and MTMR13/SBF2 regulate AKT signalling. Journal of Cellular and Molecular Medicine, 2011, 15, 307-315.	1.6	28
26	Novel Functional Germline Variants in the VEGF Receptor 2 Gene and Their Effect on Gene Expression and Microvessel Density in Lung Cancer. Clinical Cancer Research, 2011, 17, 5257-5267.	3.2	75
27	Structural analysis of vascular endothelial growth factor receptorâ€2/ligand complexes by smallâ€angle Xâ€ray solution scattering. FASEB Journal, 2011, 25, 2980-2986.	0.2	36
28	The reception and the party after: how vascular endothelial growth factor receptor 2 explores cytoplasmic space. Swiss Medical Weekly, 2011, 141, w13318.	0.8	8
29	A plasmid-based multigene expression system for mammalian cells. Nature Communications, 2010, 1, 120.	5.8	55
30	Structure–function analysis of VEGF receptor activation and the role of coreceptors in angiogenic signaling. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 567-580.	1.1	128
31	Transmembrane domainâ€mediated orientation of receptor monomers in active VEGFRâ€2 dimers. FASEB Journal, 2010, 24, 32-38.	0.2	48
32	Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proceedings of the United States of America, 2010, 107, 2425-2430.	3.3	160
33	Gremlin is a novel agonist of the major proangiogenic receptor VEGFR2. Blood, 2010, 116, 3677-3680.	0.6	163
34	Phage-Derived Fully Human Monoclonal Antibody Fragments to Human Vascular Endothelial Growth Factor-C Block Its Interaction with VEGF Receptor-2 and 3. PLoS ONE, 2010, 5, e11941.	1.1	43
35	Structure and function of VEGF receptors. IUBMB Life, 2009, 61, 915-922.	1.5	175
36	The soluble form of the cancer-associated L1 cell adhesion molecule is a pro-angiogenic factor. International Journal of Biochemistry and Cell Biology, 2009, 41, 1572-1580.	1.2	49

#	Article	IF	CITATIONS
37	A CD44v6 peptide reveals a role of CD44 in VEGFR-2 signaling and angiogenesis. Blood, 2009, 114, 5236-5244.	0.6	140
38	Recombinant human VEGF165b protein is an effective anti-cancer agent in mice. European Journal of Cancer, 2008, 44, 1883-1894.	1.3	73
39	Orf virus VEGFâ€E NZ2 promotes paracellular NRPâ€1/VEGFRâ€2 coreceptor assembly <i>via</i> the peptide RPPR. FASEB Journal, 2008, 22, 3078-3086.	0.2	49
40	A proangiogenic peptide derived from vascular endothelial growth factor receptor-1 acts through α5β1 integrin. Blood, 2008, 111, 3479-3488.	0.6	30
41	Neuropilin-1 in regulation of VEGF-induced activation of p38MAPK and endothelial cell organization. Blood, 2008, 112, 3638-3649.	0.6	143
42	Evaluation of anti-VEGFR-3 specific scFv antibodies as potential therapeutic and diagnostic tools for tumor lymph-angiogenesis. Oncology Reports, 2007, 18, 933.	1.2	5
43	Structure of a VEGF–VEGF receptor complex determined by electron microscopy. Nature Structural and Molecular Biology, 2007, 14, 249-250.	3.6	137
44	lsolation and characterization of a scFv antibody specific for tumor endothelial marker 1 (TEM1), a new reagent for targeted tumor therapy. Cancer Letters, 2006, 235, 298-308.	3.2	36
45	Structure determination of VEGF-E by sulfur SAD. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1430-1434.	2.5	9
46	Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. British Journal of Cancer, 2006, 95, 272-281.	2.9	564
47	The role of VEGF receptors in angiogenesis; complex partnerships. Cellular and Molecular Life Sciences, 2006, 63, 601-615.	2.4	325
48	A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cellular and Molecular Life Sciences, 2006, 63, 2067-2077.	2.4	168
49	Crystal Structure of the Orf Virus NZ2 Variant of Vascular Endothelial Growth Factor-E. Journal of Biological Chemistry, 2006, 281, 19578-19587.	1.6	30
50	Reconstitution of Two Recombinant LSm Protein Complexes Reveals Aspects of Their Architecture, Assembly, and Function. Journal of Biological Chemistry, 2005, 280, 16066-16075.	1.6	58
51	Targeting human cancer cells with VEGF receptor-2-directed liposomes. Oncology Reports, 2005, 13, 319-24.	1.2	13
52	Preliminary study of plasma vascular endothelial growth factor (VEGF) during low- and high-dose radiation therapy of dogs with spontaneous tumors. Veterinary Radiology and Ultrasound, 2004, 45, 247-254.	0.4	26
53	Enhanced heparan sulfate proteoglycan-mediated uptake of cell-penetrating peptide-modified liposomes. Cellular and Molecular Life Sciences, 2004, 61, 1785-94.	2.4	104
54	Role of PIGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nature Medicine, 2003, 9, 936-943.	15.2	699

Kurt Ballmer-Hofer

#	Article	IF	CITATIONS
55	Antennapedia and HIV Transactivator of Transcription (TAT) "Protein Transduction Domains―Promote Endocytosis of High Molecular Weight Cargo upon Binding to Cell Surface Glycosaminoglycans. Journal of Biological Chemistry, 2003, 278, 35109-35114.	1.6	378
56	HIV TAT Basic Peptide Is Not a High-Affinity Ligand for VEGF Receptor 2. Biological Chemistry, 2003, 384, 1435-1441.	1.2	6
57	Cytotoxic targeting of F9 teratocarcinoma tumours with anti-ED-B fibronectin scFv antibody modified liposomes. British Journal of Cancer, 2002, 87, 106-112.	2.9	70
58	Production of Functionalized Single-Chain Fv Antibody Fragments Binding to the ED-B Domain of the B-isoform of Fibronectin in Pichia pastoris. Protein Expression and Purification, 2001, 21, 156-164.	0.6	34
59	Signalling properties of an HIV-encoded angiogenic peptide mimicking vascular endothelial growth factor activity. Biochemical Journal, 2001, 353, 569.	1.7	25
60	Signalling properties of an HIV-encoded angiogenic peptide mimicking vascular endothelial growth factor activity. Biochemical Journal, 2001, 353, 569-578.	1.7	25
61	Herpesvirus saimiri protein StpB associates with cellular Src. Journal of General Virology, 2001, 82, 339-344.	1.3	15
62	VEGF transiently disrupts gap junctional communication in endothelial cells. Journal of Cell Science, 2001, 114, 1229-1235.	1.2	132
63	VEGF transiently disrupts gap junctional communication in endothelial cells. Journal of Cell Science, 2001, 114, 1229-35.	1.2	105
64	Stimulation of c-Src by prolactin is independent of Jak2. Biochemical Journal, 2000, 345, 17.	1.7	41
65	Vascular Endothelial Growth Factor (VEGF) and Its Receptors in Tumor-Bearing Dogs. Biological Chemistry, 1999, 380, 1449-54.	1.2	60
66	Polyomavirus large- and small-T relieve middle-T-induced cell cycle arrest in normal fibroblasts. Journal of General Virology, 1999, 80, 2917-2921.	1.3	3
67	Protein kinase B/Akt is activated by polyomavirus middle-T antigen via a phosphatidylinositol 3-kinase-dependent mechanism. Oncogene, 1998, 16, 903-907.	2.6	35
68	A role for the small GTPase Rac in polyomavirus middle-T antigen-mediated activation of the serum response element and in cell transformation. Oncogene, 1997, 14, 1235-1241.	2.6	36
69	Signalling by Src Family Kinases: Lessons Learnt from DNA Tumour Viruses. Cellular Signalling, 1997, 9, 385-393.	1.7	14
70	DNA Tumor Viruses and Src Family Tyrosine Kinases, an Intimate Relationship. Virology, 1997, 227, 271-280.	1.1	21
71	Functional interaction between the SH2 domain of Fyn and tyrosine 324 of hamster polyomavirus middle-T antigen. Journal of Virology, 1997, 71, 199-206.	1.5	18
72	The N terminus of hamster polyomavirus middle T antigen carries a determinant for specific activation of p59c-Fyn. Journal of Virology, 1997, 71, 1436-1442.	1.5	4

Kurt Ballmer-Hofer

#	Article	IF	CITATIONS
73	Multimerization of polyomavirus middle-T antigen. Journal of Virology, 1997, 71, 6990-6995.	1.5	13
74	Activation-independent nuclear translocation of mitogen activated protein kinase ERK1 mediated by thiol-modifying chemicals. FEBS Letters, 1996, 394, 34-38.	1.3	6
75	Constitutive activation of protein kinase B and phosphorylation of p47 phox by a membrane-targeted phosphoinositide 3-kinase. Current Biology, 1996, 6, 1271-1278.	1.8	132
76	Polyomavirus middle-T antigen lacking a membrane anchor sequence accumulates in the nucleus. Journal of General Virology, 1996, 77, 17-26.	1.3	14
77	Polyomavirus middle-T antigen associates with the kinase domain of Src-related tyrosine kinases. Journal of Virology, 1996, 70, 1323-1330.	1.5	37
78	Domains in Middle-T Antigen That Cooperate in Polyomavirus-Mediated Oncogenic Transformation. Virology, 1995, 208, 26-37.	1.1	8
79	Activation and Nuclear Translocation of Mitogen-activated Protein Kinases by Polyomavirus Middle-T or Serum Depend on Phosphatidylinositol 3-Kinase. Journal of Biological Chemistry, 1995, 270, 29286-29292.	1.6	49
80	Membrane association of polyomavirus middle-T antigen in an in vitro system. Virus Research, 1995, 35, 169-180.	1.1	1
81	Catalytic activity and transformation potential of v-Src require arginine 385 in the substrate binding pocket. Oncogene, 1995, 10, 199-203.	2.6	8
82	Phosphatase 2A associated with polyomavirus small-T or middle-T antigen is an okadaic acid-sensitive tyrosyl phosphatase. FEBS Journal, 1993, 214, 281-286.	0.2	50
83	Mitosis-specific phosphorylation of polyomavirus middle-sized tumor antigen and its role during cell transformation Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 8113-8117.	3.3	17
84	Myristylation and amino-terminal phosphorylation are required for activation of pp60c-src during mitosis. Oncogene, 1993, 8, 575-81.	2.6	13
85	Acute suppression of albumin synthesis in systemic inflammatory disease: an individually graded response of rat hepatocytes Journal of Histochemistry and Cytochemistry, 1992, 40, 201-206.	1.3	32
86	Insulin-Like Growth Factor-1 Stimulates Proliferation of Myeloid FDC-P1 Cells Overexpressing the Human Colony-Stimulating Factor-1 Receptor. Growth Factors, 1992, 7, 315-325.	0.5	4
87	Association of p60c-src with polyoma virus middle-T antigen abrogating mitosis-specific activation. Nature, 1991, 350, 431-433.	13.7	53
88	Differential expression of tenascin splicing variants in the chick gizzard and in cell cultures. Cell Differentiation and Development, 1990, 32, 417-423.	0.4	29
89	Myristylation of pp60c-src is not required for complex formation with polyomavirus middle-T antigen. Journal of Virology, 1990, 64, 5163-5166.	1.5	7
90	Stimulation of pp60c-src kinase activity in FDC-P1 cells by polyoma middle-T antigen and hematopoietic growth factors. Oncogene, 1989, 4, 1433-9.	2.6	11

#	Article	IF	CITATIONS
91	Expression of influenza hemagglutinin-polyoma T-antigen fusion proteins in a rat embryo fibroblast cell line. Virus Research, 1987, 6, 345-361.	1.1	10
92	Phosphorylation of polyoma middle T antigen and cellular proteins in purified plasma membranes of polyoma virus-infected cells EMBO Journal, 1985, 4, 2321-2327.	3.5	14
93	Isolation of in situ crosslinked ligand-receptor complexes using an anticrosslinker specific antibody. Analytical Biochemistry, 1982, 126, 246-250.	1.1	19