Eva M RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/421574/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	UVA LEDs and solar light photocatalytic oxidation/ozonation as a tertiary treatment using supported TiO2: With an eye on the photochemical properties of the secondary effluent. Journal of Environmental Chemical Engineering, 2022, 10, 107371.	6.7	4
2	Photocatalytic ozonation in water treatment: Is there really a synergy between systems?. Water Research, 2021, 206, 117727.	11.3	11
3	Generation of hydroxyl radical during chlorination of hydroxyphenols and natural organic matter extracts. Water Research, 2020, 177, 115691.	11.3	39
4	Kinetic model basis of ozone/light-based advanced oxidation processes: a pseudoempirical approach. Environmental Science: Water Research and Technology, 2020, 6, 1176-1185.	2.4	7
5	Ozone-Based Advanced Oxidation Processes for Primidone Removal in Water using Simulated Solar Radiation and TiO2 or WO3 as Photocatalyst. Molecules, 2019, 24, 1728.	3.8	18
6	Application of solar photocatalytic ozonation in water treatment using supported TiO2. Applied Catalysis B: Environmental, 2019, 254, 237-245.	20.2	44
7	Impact of TiO2/UVA photocatalysis on THM formation potential. Catalysis Today, 2018, 313, 167-174.	4.4	7
8	Nanostructured CeO 2 as catalysts for different AOPs based in the application of ozone and simulated solar radiation. Catalysis Today, 2017, 280, 74-79.	4.4	34
9	Degradation of Phenolic Compounds in Aqueous Sucrose Solutions by Ozonation. Ozone: Science and Engineering, 2017, 39, 255-263.	2.5	6
10	Reaction mechanism and kinetics of DEET visible light assisted photocatalytic ozonation with WO3 catalyst. Applied Catalysis B: Environmental, 2017, 202, 460-472.	20.2	49
11	Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts – Electrophilic aromatic substitution and oxidation. Water Research, 2015, 85, 476-486.	11.3	235
12	Supported TiO ₂ solar photocatalysis at semi-pilot scale: degradation of pesticides found in citrus processing industry wastewater, reactivity and influence of photogenerated species. Journal of Chemical Technology and Biotechnology, 2015, 90, 149-157.	3.2	75
13	Determination of main species involved in the first steps of TiO2 photocatalytic degradation of organics with the use of scavengers: The case of ofloxacin. Applied Catalysis B: Environmental, 2015, 178, 44-53.	20.2	193
14	Solar photocatalytic ozonation of a mixture of pharmaceutical compounds in water. Chemosphere, 2014, 113, 71-78.	8.2	61
15	Integration of ozone and solar TiO2-photocatalytic oxidation for the degradation of selected pharmaceutical compounds in water and wastewater. Separation and Purification Technology, 2014, 136, 18-26.	7.9	37
16	Mechanism considerations for photocatalytic oxidation, ozonation and photocatalytic ozonation of some pharmaceutical compounds in water. Journal of Environmental Management, 2013, 127, 114-124.	7.8	79
17	Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Research, 2013, 47, 1521-1528.	11.3	254
18	Determination of Rate Constants for Ozonation of Ofloxacin in Aqueous Solution. Ozone: Science and Engineering, 2013, 35, 186-195.	2.5	21

Eva M RodrÃguez

#	Article	IF	CITATIONS
19	TiO2 and Fe (III) photocatalytic ozonation processes of a mixture of emergent contaminants of water. Water Research, 2012, 46, 152-166.	11.3	56
20	Photocatalytic degradation of organics in water in the presence of iron oxides: Effects of pH and light source. Applied Catalysis B: Environmental, 2011, 102, 572-583.	20.2	48
21	Efficiency of different solar advanced oxidation processes on the oxidation of bisphenol A in water. Applied Catalysis B: Environmental, 2010, 95, 228-237.	20.2	72
22	Degradation of bisphenol A in water by Fe(III)/UVA and Fe(III)/polycarboxylate/UVA photocatalysis. Water Science and Technology, 2010, 61, 2717-2722.	2.5	4
23	Effects of some carboxylic acids on the Fe(III)/UVA photocatalytic oxidation of muconic acid in water. Applied Catalysis B: Environmental, 2009, 89, 214-222.	20.2	56
24	Photocatalytic degradation of organics in water in the presence of iron oxides: Influence of carboxylic acids. Applied Catalysis B: Environmental, 2009, 92, 240-249.	20.2	76
25	Oxidation of MC-LR and -RR with chlorine and potassium permanganate: Toxicity of the reaction products. Water Research, 2008, 42, 1744-1752.	11.3	77
26	Influence of resorcinol chemical oxidation on the removal of resulting organic carbon by activated carbon adsorption. Chemosphere, 2008, 70, 1366-1374.	8.2	22
27	Sequential Use of Bentonites and Solar Photocatalysis to Treat Winery Wastewater. Journal of Agricultural and Food Chemistry, 2008, 56, 11956-11961.	5.2	7
28	Oxidation of microcystin-LR with chlorine and permanganate during drinking water treatment. Journal of Water Supply: Research and Technology - AQUA, 2008, 57, 371-380.	1.4	26
29	Oxidation of microcystins by permanganate: Reaction kinetics and implications for water treatment. Water Research, 2007, 41, 102-110.	11.3	164
30	Homogeneous iron-catalyzed photochemical degradation of muconic acid in water. Water Research, 2007, 41, 1325-1333.	11.3	25
31	Kinetics of the oxidation of cylindrospermopsin and anatoxin-a with chlorine, monochloramine and permanganate. Water Research, 2007, 41, 2048-2056.	11.3	95
32	Oxidative elimination of cyanotoxins: Comparison of ozone, chlorine, chlorine dioxide and permanganate. Water Research, 2007, 41, 3381-3393.	11.3	222
33	Kinetics of the ozonation of muconic acid in water. Journal of Hazardous Materials, 2006, 138, 534-538.	12.4	16
34	Integration of Ozonation and an Anaerobic Sequencing Batch Reactor (AnSBR) for the Treatment of Cherry Stillage. Biotechnology Progress, 2005, 21, 1543-1551.	2.6	11
35	Kinetics of reactions between chlorine and the cyanobacterial toxins microcystins. Water Research, 2005, 39, 1628-1638.	11.3	144
36	Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol. Water Research, 2004, 38, 2155-2165.	11.3	149

Eva M RodrÃguez

#	Article	IF	CITATIONS
37	Wet peroxide degradation of atrazine. Chemosphere, 2004, 54, 71-78.	8.2	18
38	Incidence of an Ozonation Stage on the Treatment of Cherry Stillage by Activated Sludge. Ozone: Science and Engineering, 2004, 26, 257-266.	2.5	3
39	HOMOGENEOUS CATALYZED OZONATION OF SIMAZINE. EFFECT OF Mn(II) AND Fe(II). Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2001, 36, 317-330.	1.5	28
40	Treatment of High Strength Distillery Wastewater (Cherry Stillage) by Integrated Aerobic Biological Oxidation and Ozonation. Biotechnology Progress, 2001, 17, 462-467.	2.6	64
41	Kinetics of simazine advanced oxidation in water. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2000, 35, 439-454.	1.5	25
42	Kinetics Of Competitive Ozonation Of Some Phenolic Compounds Present In Wastewater From Food Processing Industries. Ozone: Science and Engineering, 2000, 22, 167-183.	2.5	33
43	Ozone remediation of some phenol compounds present in food processing wastewater. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2000, 35, 681-699.	1.7	8
44	Comparison Of Ozonation Kinetic Data From Film and Danckwerts Theories. Ozone: Science and Engineering, 1998, 20, 403-420.	2.5	14