
Irina Budunova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/421556/publications.pdf Version: 2024-02-01

Ισινία Βιισιινονά

#	Article	IF	CITATIONS
1	Discovery of Compound A - a selective activator of the glucocorticoid receptor with anti-inflammatory and anti-cancer activity. Oncotarget, 2015, 6, 30730-30744.	1.8	61
2	Novel Steroid Receptor Phyto-Modulator Compound A Inhibits Growth and Survival of Prostate Cancer Cells. Cancer Research, 2008, 68, 4763-4773.	0.9	52
3	<scp>REDD</scp> 1 functions at the crossroads between the therapeutic and adverse effects of topical glucocorticoids. EMBO Molecular Medicine, 2015, 7, 42-58.	6.9	51
4	Differential targeting of androgen and glucocorticoid receptors induces ER stress and apoptosis in prostate cancer cells. Cell Cycle, 2012, 11, 395-406.	2.6	45
5	Endogenous Glucocorticoid Deficiency in Psoriasis Promotes Inflammation and Abnormal Differentiation. Journal of Investigative Dermatology, 2017, 137, 1474-1483.	0.7	38
6	The mechanisms of tumor suppressor effect of glucocorticoid receptor in skin. Molecular Carcinogenesis, 2007, 46, 732-740.	2.7	37
7	Asymmetric expression of connexins between luminal epithelial- and myoepithelial- cells is essential for contractile function of the mammary gland. Developmental Biology, 2015, 399, 15-26.	2.0	29
8	PI3K inhibitors protect against glucocorticoid-induced skin atrophy. EBioMedicine, 2019, 41, 526-537.	6.1	26
9	Rapamycin Modulates Glucocorticoid Receptor Function, Blocks Atrophogene REDD1, and Protects Skin from SteroidÂAtrophy. Journal of Investigative Dermatology, 2018, 138, 1935-1944.	0.7	25
10	Combination of a selective activator of the glucocorticoid receptor Compound A with a proteasome inhibitor as a novel strategy for chemotherapy of hematologic malignancies. Cell Cycle, 2013, 12, 133-144.	2.6	22
11	Deletion of the glucocorticoid receptor chaperone FKBP51 prevents glucocorticoid-induced skin atrophy. Oncotarget, 2018, 9, 34772-34783.	1.8	20
12	Transcriptomic Network Interactions in Human Skin Treated with Topical Glucocorticoid Clobetasol Propionate. Journal of Investigative Dermatology, 2019, 139, 2281-2291.	0.7	18
13	Selective Activator of the Glucocorticoid Receptor Compound A Dissociates Therapeutic and Atrophogenic Effects of Glucocorticoid Receptor Signaling in Skin. Journal of Cancer Prevention, 2015, 20, 250-259.	2.0	15
14	Important role of kallikrein 6 for the development of keratinocyte proliferative resistance to topical glucocorticoids. Oncotarget, 2016, 7, 69479-69488.	1.8	12
15	N-bromotaurine surrogates for loss of antiproliferative response and enhances cisplatin efficacy in cancer cells with impaired glucocorticoid receptor. Translational Research, 2016, 173, 58-73.e2.	5.0	7
16	A Novel Approach to Safer Glucocorticoid Receptor–Targeted Anti-lymphoma Therapy via REDD1 (Regulated in Development and DNA Damage 1) Inhibition. Molecular Cancer Therapeutics, 2020, 19, 1898-1908.	4.1	7
17	Regulated in Development and DNA Damage Responses 1 Prevents Dermal Adipocyte Differentiation and Is Required for Hair Cycle–Dependent Dermal Adipose Expansion. Journal of Investigative Dermatology, 2020, 140, 1698-1705.e1.	0.7	7
18	Sexual dimorphism in atrophic effects of topical glucocorticoids is driven by differential regulation of atrophogene REDD1 in male and female skin. Oncotarget, 2020, 11, 409-418.	1.8	7

Irina Budunova

#	Article	IF	CITATIONS
19	Transcriptome Analysis Reveals Intrinsic Proinflammatory Signaling in Healthy African American Skin. Journal of Investigative Dermatology, 2022, 142, 1360-1371.e15.	0.7	5
20	Early Stress-Response Gene REDD1 Controls Oxazolone-Induced Allergic Contact Dermatitis. Journal of Immunology, 2021, 207, 1747-1754.	0.8	2
21	Anti-Proliferative Effects of Compound a and Its Effect in Combination with Cisplatin in Cholangiocarcinoma Cells. Asian Pacific Journal of Cancer Prevention, 2020, 21, 2673-2681.	1.2	1
22	Anti-Proliferative Effects of Compound A and Its Effect in Combination with Cisplatin in Cholangiocarcinoma Cells. Asian Pacific Journal of Cancer Prevention, 2020, 21, 2673-2681.	1.2	0