Qizhang Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4214667/publications.pdf Version: 2024-02-01

Οιζηλής Υλη

#	Article	IF	CITATIONS
1	A disordered rock salt anode for fast-charging lithium-ion batteries. Nature, 2020, 585, 63-67.	27.8	326
2	A fabrication process for flexible single-crystal perovskite devices. Nature, 2020, 583, 790-795.	27.8	278
3	Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation. Rare Metals, 2021, 40, 1347-1356.	7.1	115
4	A scalable 3D lithium metal anode. Energy Storage Materials, 2019, 16, 505-511.	18.0	95
5	Efficient Direct Recycling of Degraded LiMn ₂ O ₄ Cathodes by One-Step Hydrothermal Relithiation. ACS Applied Materials & Interfaces, 2020, 12, 51546-51554.	8.0	88
6	Draining Over Blocking: Nanoâ€Composite Janus Separators for Mitigating Internal Shorting of Lithium Batteries. Advanced Materials, 2020, 32, e1906836.	21.0	62
7	High-entropy monoborides: Towards superhard materials. Scripta Materialia, 2020, 189, 101-105.	5.2	57
8	Ultrahigh coulombic efficiency electrolyte enables Li SPAN batteries with superior cycling performance. Materials Today, 2021, 42, 17-28.	14.2	50
9	LiPO2F2 electrolyte additive for high-performance Li-rich cathode material. Journal of Energy Chemistry, 2021, 60, 564-571.	12.9	49
10	Elucidating the Limit of Li Insertion into the Spinel Li ₄ Ti ₅ O ₁₂ . , 2019, 1, 96-102.		45
11	Structure and Solution Dynamics of Lithium Methyl Carbonate as a Protective Layer For Lithium Metal. ACS Applied Energy Materials, 2018, 1, 1864-1869.	5.1	41
12	A new class of high-entropy M3B4 borides. Journal of Advanced Ceramics, 2021, 10, 166-172.	17.4	39
13	Sequenceâ€Defined Peptoids with OH and COOH GroupsÂAs Binders to Reduce Cracks of Si Nanoparticles of Lithiumâ€Ion Batteries. Advanced Science, 2020, 7, 2000749.	11.2	38
14	High-entropy rare earth tetraborides. Journal of the European Ceramic Society, 2021, 41, 2968-2973.	5.7	28
15	Bulk high-entropy hexaborides. Journal of the European Ceramic Society, 2021, 41, 5775-5781.	5.7	22
16	A facile synthesis of non-aqueous LiPO2F2 solution as the electrolyte additive for high performance lithium ion batteries. Chinese Chemical Letters, 2020, 31, 3209-3212.	9.0	19
17	A Perspective on interfacial engineering of lithium metal anodes and beyond. Applied Physics Letters, 2020, 117, .	3.3	18
18	Oxidative Stabilization of Dilute Ether Electrolytes via Anion Modification. ACS Energy Letters, 2022, 7, 675-682.	17.4	15

QIZHANG YAN

#	Article	IF	CITATIONS
19	High-Rate Lithium Cycling and Structure Evolution in Mo ₄ O ₁₁ . Chemistry of Materials, 2022, 34, 4122-4133.	6.7	13
20	Synthesis and electrochemical performance of defected nano-micro structure sodium/lithium titanate composites materials for lithium-ion batteries. Vacuum, 2020, 177, 109402.	3.5	12
21	A new type of compositionally complex M5Si3 silicides: Cation ordering and unexpected phase stability. Scripta Materialia, 2022, 212, 114557.	5.2	11
22	Avoiding dendrite formation by confining lithium deposition underneath Li–Sn coatings. Journal of Materials Research, 2021, 36, 797-811.	2.6	4
23	Thermodynamics-driven interfacial engineering of alloy-type anode materials. Cell Reports Physical Science, 2022, 3, 100694.	5.6	4
24	Low-Cost Li SPAN Batteries Enabled by Sustained Additive Release. ACS Applied Energy Materials, 2021, 4, 6422-6429.	5.1	2
25	Cryogenic Milling Method to Fabricate Nanostructured Anodes. ACS Applied Energy Materials, 2020, 3, 11285-11292.	5.1	2