Alan E Mark

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/421460/alan-e-mark-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

223	35,808 citations	72	188
papers		h-index	g-index
229	40,010 ext. citations	5.4	7.24
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
223	Understanding the Effect of pH on the Solubility and Aggregation Extent of Humic Acid in Solution by Combining Simulation and the Experiment <i>Environmental Science & Description</i> (2022),	10.3	1
222	Modelling of the dynamic polarizability of macromolecules for single-molecule optical biosensing <i>Scientific Reports</i> , 2022 , 12, 1995	4.9	3
221	Understanding the performance differences between solution and vacuum deposited OLEDs: A computational approach. <i>Journal of Chemical Physics</i> , 2022 , 156, 214703	3.9	O
220	Unraveling exciton processes in Ir(ppy):CBP OLED films upon photoexcitation. <i>Journal of Chemical Physics</i> , 2021 , 154, 164101	3.9	6
219	On the Effect of the Various Assumptions and Approximations used in Molecular Simulations on the Properties of Bio-Molecular Systems: Overview and Perspective on Issues. <i>ChemPhysChem</i> , 2021 , 22, 264-282	3.2	2
218	Revealing the Interplay between Charge Transport, Luminescence Efficiency, and Morphology in Organic Light-Emitting Diode Blends. <i>Advanced Functional Materials</i> , 2020 , 30, 1907942	15.6	19
217	Curved or linear? Predicting the 3-dimensional structure of Ehelical antimicrobial peptides in an amphipathic environment. <i>FEBS Letters</i> , 2020 , 594, 1062-1080	3.8	1
216	Understanding the Activated Form of a Class-I Fusion Protein: Modeling the Interaction of the Ebola Virus Glycoprotein 2 with a Lipid Bilayer. <i>Biochemistry</i> , 2020 , 59, 4051-4058	3.2	0
215	Evolution and Morphology of Thin Films Formed by Solvent Evaporation: An Organic Semiconductor Case Study. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 40548-40557	9.5	4
214	Effect of Triclosan and Chloroxylenol on Bacterial Membranes. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 5291-5301	3.4	8
213	Response of microbial membranes to butanol: interdigitation vs. disorder. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 11903-11915	3.6	11
212	Automated partial atomic charge assignment for drug-like molecules: a fast knapsack approach. <i>Algorithms for Molecular Biology</i> , 2019 , 14, 1	1.8	13
211	Effect of Surface Roughness on Light-Absorber Orientation in an Organic Photovoltaic Film. <i>Chemistry of Materials</i> , 2019 , 31, 6918-6924	9.6	2
210	Probing the Pharmacological Binding Sites of P-Glycoprotein Using Umbrella Sampling Simulations. Journal of Chemical Information and Modeling, 2019 , 59, 2287-2298	6.1	8
209	Effect of Binding on Enantioselectivity of Epoxide Hydrolase. <i>Journal of Chemical Information and Modeling</i> , 2018 , 58, 630-640	6.1	6
208	Developments in Glycopeptide Antibiotics. ACS Infectious Diseases, 2018, 4, 715-735	5.5	112
207	Validierung von molekularen Simulationen: eine Bersicht verschiedener Aspekte. <i>Angewandte Chemie</i> , 2018 , 130, 894-915	3.6	3

(2016-2018)

206	Validation of Molecular Simulation: An Overview of Issues. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 884-902	16.4	74
205	A potential new, stable state of the E-cadherin strand-swapped dimer in solution. <i>European Biophysics Journal</i> , 2018 , 47, 59-67	1.9	1
204	Predicting the Prevalence of Alternative Warfarin Tautomers in Solution. <i>Journal of Chemical Theory and Computation</i> , 2018 , 14, 4405-4415	6.4	6
203	Morphology of a Bulk Heterojunction Photovoltaic Cell with Low Donor Concentration. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 32413-32419	9.5	16
202	The reliability of molecular dynamics simulations of the multidrug transporter P-glycoprotein in a membrane environment. <i>PLoS ONE</i> , 2018 , 13, e0191882	3.7	21
201	Could Cardiolipin Protect Membranes against the Action of Certain Antimicrobial Peptides? Aurein 1.2, a Case Study. <i>ACS Omega</i> , 2018 , 3, 16453-16464	3.9	10
200	Automated Topology Builder Version 3.0: Prediction of Solvation Free Enthalpies in Water and Hexane. <i>Journal of Chemical Theory and Computation</i> , 2018 , 14, 5834-5845	6.4	174
199	Do All X-ray Structures of Protein-Ligand Complexes Represent Functional States? EPOR, a Case Study. <i>Biophysical Journal</i> , 2017 , 112, 595-604	2.9	5
198	Elucidating the Spatial Arrangement of Emitter Molecules in Organic Light-Emitting Diode Films. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8402-8406	16.4	33
197	Elucidating the Spatial Arrangement of Emitter Molecules in Organic Light-Emitting Diode Films. <i>Angewandte Chemie</i> , 2017 , 129, 8522-8526	3.6	1
196	Real Cost of Speed: The Effect of a Time-Saving Multiple-Time-Stepping Algorithm on the Accuracy of Molecular Dynamics Simulations. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 2367-2372	6.4	36
195	The Molecular Origin of Anisotropic Emission in an Organic Light-Emitting Diode. <i>Nano Letters</i> , 2017 , 17, 6464-6468	11.5	30
194	Optimization of Empirical Force Fields by Parameter Space Mapping: A Single-Step Perturbation Approach. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 6201-6212	6.4	16
193	Bestimmung von Strukturinformation aus experimentellen Messdaten fil Biomolekle. <i>Angewandte Chemie</i> , 2016 , 128, 16222-16244	3.6	7
192	Deriving Structural Information from Experimentally Measured Data on Biomolecules. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 15990-16010	16.4	21
191	The CC domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 12856-12861	11.5	72
190	Interaction of Tarantula Venom Peptide ProTx-II with Lipid Membranes Is a Prerequisite for Its Inhibition of Human Voltage-gated Sodium Channel NaV1.7. <i>Journal of Biological Chemistry</i> , 2016 , 291, 17049-65	5.4	52
189	Validating lipid force fields against experimental data: Progress, challenges and perspectives. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2016 , 1858, 1556-65	3.8	51

188	Understanding the accumulation of P-glycoprotein substrates within cells: The effect of cholesterol on membrane partitioning. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2016 , 1858, 776-82	3.8	12
187	Combination of Ambiguous and Unambiguous Data in the Restraint-driven Docking of Flexible Peptides with HADDOCK: The Binding of the Spider Toxin PcTx1 to the Acid Sensing Ion Channel (ASIC) 1a. <i>Journal of Chemical Information and Modeling</i> , 2016 , 56, 127-38	6.1	6
186	Revisiting the scissor-like mechanism of activation for the erythropoietin receptor. <i>FEBS Letters</i> , 2016 , 590, 3083-8	3.8	1
185	Membrane-binding properties of gating modifier and pore-blocking toxins: Membrane interaction is not a prerequisite for modification of channel gating. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2016 , 1858, 872-82	3.8	20
184	Binding of Starch Fragments to the Starch Branching Enzyme: Implications for Developing Slower-Digesting Starch. <i>Biomacromolecules</i> , 2015 , 16, 2475-81	6.9	5
183	A ring to rule them all: the effect of cyclopropane Fatty acids on the fluidity of lipid bilayers. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 5487-95	3.4	80
182	Effect of Ring Size in FAlicyclic Fatty Acids on the Structural and Dynamical Properties Associated with Fluidity in Lipid Bilayers. <i>Langmuir</i> , 2015 , 31, 11574-82	4	5
181	Molecular dynamics and functional studies define a hot spot of crystal contacts essential for PcTx1 inhibition of acid-sensing ion channel 1a. <i>British Journal of Pharmacology</i> , 2015 , 172, 4985-95	8.6	29
180	Identification of Possible Binding Sites for Morphine and Nicardipine on the Multidrug Transporter P-Glycoprotein Using Umbrella Sampling Techniques. <i>Journal of Chemical Information and Modeling</i> , 2015 , 55, 1202-17	6.1	23
179	The characterization of modified starch branching enzymes: toward the control of starch chain-length distributions. <i>PLoS ONE</i> , 2015 , 10, e0125507	3.7	18
178	Testing and validation of the Automated Topology Builder (ATB) version 2.0: prediction of hydration free enthalpies. <i>Journal of Computer-Aided Molecular Design</i> , 2014 , 28, 221-33	4.2	334
177	Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. <i>Science</i> , 2014 , 344, 1249783	33.3	269
176	Determining the structure of interfacial peptide films: comparing neutron reflectometry and molecular dynamics simulations. <i>Langmuir</i> , 2014 , 30, 10080-9	4	17
175	Activation of the epidermal growth factor receptor: a series of twists and turns. <i>Biochemistry</i> , 2014 , 53, 2710-21	3.2	11
174	The revised Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not scientifically justified: comment on "Consciousness in the universe: a review of the Porch ORP theory" by Hameroff and Penrose. <i>Physics of Life Reviews</i> , 2014 , 11, 101-3; discussion 104-12	2.1	8
173	Structural characterization of two metastable ATP-bound states of P-glycoprotein. <i>PLoS ONE</i> , 2014 , 9, e91916	3.7	24
172	Small-Angle X-Ray Scattering for the Discerning Macromolecular Crystallographer. <i>Australian Journal of Chemistry</i> , 2014 , 67, 1786	1.2	2
171	Some Like It Hot: The Effect of Sterols and Hopanoids on Lipid Ordering at High Temperature. Journal of Physical Chemistry Letters, 2014 , 5, 3953-7	6.4	17

(2011-2014)

170	Does tautomerization of FapyG influence its mutagenicity?. ChemPhysChem, 2014, 15, 1779-84	3.2	10
169	The recognition of membrane-bound PtdIns3P by PX domains. <i>Proteins: Structure, Function and Bioinformatics</i> , 2014 , 82, 2332-42	4.2	9
168	Effect of methyl-branched fatty acids on the structure of lipid bilayers. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 13838-48	3.4	49
167	Study of Proteins and Peptides at Interfaces by Molecular Dynamics Simulation Techniques 2013 , 291-3	313	1
166	The relative effect of sterols and hopanoids on lipid bilayers: when comparable is not identical. Journal of Physical Chemistry B, 2013 , 117, 16129-40	3.4	39
165	Charge group partitioning in biomolecular simulation. <i>Journal of Computational Biology</i> , 2013 , 20, 188-9	9 & .7	120
164	Vancomycin: ligand recognition, dimerization and super-complex formation. <i>FEBS Journal</i> , 2013 , 280, 1294-307	5.7	29
163	Missing fragments: detecting cooperative binding in fragment-based drug design. <i>ACS Medicinal Chemistry Letters</i> , 2012 , 3, 322-6	4.3	21
162	Lipid Bilayers: The Effect of Force Field on Ordering and Dynamics. <i>Journal of Chemical Theory and Computation</i> , 2012 , 8, 4807-17	6.4	66
161	Charge Group Partitioning in Biomolecular Simulation. <i>Lecture Notes in Computer Science</i> , 2012 , 29-43	0.9	5
160	Wilfred van Gunsteren: 35 Years of Biomolecular Simulation. <i>Journal of Chemical Theory and Computation</i> , 2012 , 8, 3425-9	6.4	О
159	Molecular dynamics simulations of the interactions of DMSO with DPPC and DOPC phospholipid membranes. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 11911-23	3.4	53
158	Molecular dynamics unlocks atomic level self-assembly of the exopolysaccharide matrix of water-treatment granular biofilms. <i>Biomacromolecules</i> , 2012 , 13, 1965-72	6.9	16
157	Mimicking the action of folding chaperones by Hamiltonian replica-exchange molecular dynamics simulations: application in the refinement of de novo models. <i>Proteins: Structure, Function and Bioinformatics</i> , 2012 , 80, 1744-54	4.2	12
156	The Effect of Environment on the Structure of a Membrane Protein: P-Glycoprotein under Physiological Conditions. <i>Journal of Chemical Theory and Computation</i> , 2012 , 8, 3964-76	6.4	40
155	The effect of environment on the recognition and binding of vancomycin to native and resistant forms of lipid II. <i>Biophysical Journal</i> , 2011 , 101, 2684-92	2.9	28
154	Effect of high pressure on fully hydrated DPPC and POPC bilayers. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 1038-44	3.4	26
153	A dynamic pharmacophore drives the interaction between Psalmotoxin-1 and the putative drug target acid-sensing ion channel 1a. <i>Molecular Pharmacology</i> , 2011 , 80, 796-808	4.3	78

152	Effect of poly(ethylene glycol) (PEG) spacers on the conformational properties of small peptides: a molecular dynamics study. <i>Langmuir</i> , 2011 , 27, 296-303	4	28
151	An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0. <i>Journal of Chemical Theory and Computation</i> , 2011 , 7, 4026-37	6.4	1030
150	Challenges in the determination of the binding modes of non-standard ligands in X-ray crystal complexes. <i>Journal of Computer-Aided Molecular Design</i> , 2011 , 25, 1-12	4.2	23
149	The effect of membrane curvature on the conformation of antimicrobial peptides: implications for binding and the mechanism of action. <i>European Biophysics Journal</i> , 2011 , 40, 545-53	1.9	46
148	Definition and testing of the GROMOS force-field versions 54A7 and 54B7. <i>European Biophysics Journal</i> , 2011 , 40, 843-56	1.9	1326
147	Protein Hurns Recreated in Structurally Stable Small Molecules. <i>Angewandte Chemie</i> , 2011 , 123, 11303	8-13 16 107	8
146	Protein Eturns recreated in structurally stable small molecules. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 11107-11	16.4	19
145	Using Theory to Reconcile Experiment: The Structural and Thermodynamic Basis of Ligand Recognition by Phenylethanolamine N-Methyltransferase (PNMT). <i>Journal of Chemical Theory and Computation</i> , 2011 , 7, 1458-68	6.4	13
144	Comparison of enveloping distribution sampling and thermodynamic integration to calculate binding free energies of phenylethanolamine N-methyltransferase inhibitors. <i>Journal of Chemical Physics</i> , 2011 , 135, 024105	3.9	36
143	Activating the Prolactin Receptor: Effect of the Ligand on the Conformation of the Extracellular Domain. <i>Journal of Chemical Theory and Computation</i> , 2010 , 6, 3274-83	6.4	2
142	On the Validation of Molecular Dynamics Simulations of Saturated and cis-Monounsaturated Phosphatidylcholine Lipid Bilayers: A Comparison with Experiment. <i>Journal of Chemical Theory and Computation</i> , 2010 , 6, 325-36	6.4	232
141	Basic ingredients of free energy calculations: a review. <i>Journal of Computational Chemistry</i> , 2010 , 31, 1569-82	3.5	225
140	On the relative merits of equilibrium and non-equilibrium simulations for the estimation of free-energy differences. <i>ChemPhysChem</i> , 2010 , 11, 3734-43	3.2	9
139	A new force field for simulating phosphatidylcholine bilayers. <i>Journal of Computational Chemistry</i> , 2010 , 31, 1117-25	3.5	261
138	Turning the growth hormone receptor on: evidence that hormone binding induces subunit rotation. <i>Proteins: Structure, Function and Bioinformatics</i> , 2010 , 78, 1163-74	4.2	17
137	Weak, strong, and coherent regimes of Frillich condensation and their applications to terahertz medicine and quantum consciousness. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 4219-24	11.5	74
136	Probing the free energy landscape of the FBP28WW domain using multiple techniques. <i>Journal of Computational Chemistry</i> , 2009 , 30, 1059-68	3.5	6
135	Calcium binding to the purple membrane: A molecular dynamics study. <i>Proteins: Structure, Function and Bioinformatics</i> , 2009 , 74, 669-81	4.2	5

134	Inclusion of ionization states of ligands in affinity calculations. <i>Proteins: Structure, Function and Bioinformatics</i> , 2009 , 76, 138-50	4.2	9
133	Binding and enantiomeric selectivity of threonyl-tRNA synthetase. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3848-9	16.4	13
132	Factors that affect the degree of twist in beta-sheet structures: a molecular dynamics simulation study of a cross-beta filament of the GNNQQNY peptide. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 172	<u>8</u> : 4 7	54
131	Disturb or stabilize? A molecular dynamics study of the effects of resorcinolic lipids on phospholipid bilayers. <i>Biophysical Journal</i> , 2009 , 96, 3140-53	2.9	18
130	Alternative mechanisms for the interaction of the cell-penetrating peptides penetratin and the TAT peptide with lipid bilayers. <i>Biophysical Journal</i> , 2009 , 97, 40-9	2.9	143
129	Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not biologically feasible. <i>Physical Review E</i> , 2009 , 80, 021912	2.4	48
128	Molecular simulation as an aid to experimentalists. Current Opinion in Structural Biology, 2008, 18, 149-5	3 3.1	150
127	The structure of a two-disulfide intermediate assists in elucidating the oxidative folding pathway of a cyclic cystine knot protein. <i>Structure</i> , 2008 , 16, 842-51	5.2	34
126	Application of mean field boundary potentials in simulations of lipid vesicles. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 7438-47	3.4	57
125	The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. <i>Journal of Molecular Biology</i> , 2008 , 382, 708-20	6.5	60
124	Toroidal pores formed by antimicrobial peptides show significant disorder. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2008 , 1778, 2308-17	3.8	364
123	Histidine protonation and the activation of viral fusion proteins. <i>Biochemical Society Transactions</i> , 2008 , 36, 43-5	5.1	51
122	The conformation of the extracellular binding domain of Death Receptor 5 in the presence and absence of the activating ligand TRAIL: a molecular dynamics study. <i>Proteins: Structure, Function and Bioinformatics</i> , 2008 , 70, 333-43	4.2	14
121	Refining homology models by combining replica-exchange molecular dynamics and statistical potentials. <i>Proteins: Structure, Function and Bioinformatics</i> , 2008 , 72, 1171-88	4.2	65
120	Electrophoretic mobility does not always reflect the charge on an oil droplet. <i>Journal of Colloid and Interface Science</i> , 2008 , 318, 477-86	9.3	45
119	How sensitive are nanosecond molecular dynamics simulations of proteins to changes in the force field?. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 6015-25	3.4	16
118	On the characterization of host-guest complexes: surface tension, calorimetry, and molecular dynamics of cyclodextrins with a non-ionic surfactant. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 4383-9	2 ·4	89
117	Molecular dynamics simulations from putative transition states of alpha-spectrin SH3 domain. <i>Proteins: Structure, Function and Bioinformatics</i> , 2007 , 69, 536-50	4.2	13

116	Applications of Free Energy Calculations to Chemistry and Biology. <i>Springer Series in Chemical Physics</i> , 2007 , 463-501	0.3	11
115	Convergence and sampling efficiency in replica exchange simulations of peptide folding in explicit solvent. <i>Journal of Chemical Physics</i> , 2007 , 126, 014903	3.9	105
114	Does isoprene protect plant membranes from thermal shock? A molecular dynamics study. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2007 , 1768, 198-206	3.8	81
113	Ion transport across transmembrane pores. <i>Biophysical Journal</i> , 2007 , 92, 4209-15	2.9	80
112	The Role of histidine residues in low-pH-mediated viral membrane fusion. <i>Structure</i> , 2006 , 14, 1481-7	5.2	120
111	The effect of box shape on the dynamic properties of proteins simulated under periodic boundary conditions. <i>Journal of Computational Chemistry</i> , 2006 , 27, 316-25	3.5	28
110	Antimicrobial peptides in action. Journal of the American Chemical Society, 2006, 128, 12156-61	16.4	372
109	Phase behavior of a phospholipid/fatty acid/water mixture studied in atomic detail. <i>Journal of the American Chemical Society</i> , 2006 , 128, 2030-4	16.4	43
108	Conformational polymorphism of the PrP106-126 peptide in different environments: a molecular dynamics study. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 1423-8	3.4	34
107	Molecular dynamics simulations of the hydrophobin SC3 at a hydrophobic/hydrophilic interface. <i>Proteins: Structure, Function and Bioinformatics</i> , 2006 , 64, 863-73	4.2	27
106	Mimicking the action of GroEL in molecular dynamics simulations: application to the refinement of protein structures. <i>Protein Science</i> , 2006 , 15, 441-8	6.3	8
105	Molecular structure of the lecithin ripple phase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 5392-6	11.5	146
104	A molecular dynamics study of the formation, stability, and oligomerization state of two designed coiled coils: possibilities and limitations. <i>Biophysical Journal</i> , 2005 , 89, 3701-13	2.9	23
103	A molecular dynamics study of the structural stability of HIV-1 protease under physiological conditions: the role of Na+ ions in stabilizing the active site. <i>Proteins: Structure, Function and Bioinformatics</i> , 2005 , 58, 450-8	4.2	19
102	Advanced approaches for the characterization of a de novo designed antiparallel coiled coil peptide. <i>Organic and Biomolecular Chemistry</i> , 2005 , 3, 1189-94	3.9	22
101	Incorporating the effect of ionic strength in free energy calculations using explicit ions. <i>Journal of Computational Chemistry</i> , 2005 , 26, 115-22	3.5	35
100	GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 2005, 26, 1701-18	3.5	10273
99	Stability of SIV gp32 fusion-peptide single-layer protofibrils as monitored by molecular-dynamics simulations. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 1065-1067	16.4	21

(2003-2005)

98	Stability of SIV gp32 Fusion-Peptide Single-Layer Protofibrils as Monitored by Molecular-Dynamics Simulations. <i>Angewandte Chemie</i> , 2005 , 117, 1089-1091	3.6	4
97	Calculation of the redox potential of the protein azurin and some mutants. <i>ChemBioChem</i> , 2005 , 6, 738-	- 4 568	46
96	Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model. <i>Chemistry and Physics of Lipids</i> , 2005 , 135, 223-44	3.7	261
95	Comparative study of generalized Born models: protein dynamics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 6760-4	11.5	63
94	Simulation studies of pore and domain formation in a phospholipid monolayer. <i>Journal of Chemical Physics</i> , 2005 , 122, 024704	3.9	48
93	Electrofreezing of confined water. <i>Journal of Chemical Physics</i> , 2004 , 120, 7123-30	3.9	99
92	Mimicking the action of folding chaperones in molecular dynamics simulations: Application to the refinement of homology-based protein structures. <i>Protein Science</i> , 2004 , 13, 992-9	6.3	15
91	A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. <i>Journal of Computational Chemistry</i> , 2004 , 25, 1656-76	3.5	2844
90	Photoactivation of the photoactive yellow protein: why photon absorption triggers a trans-to-cis Isomerization of the chromophore in the protein. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4228-33	16.4	246
89	Refinement of homology-based protein structures by molecular dynamics simulation techniques. <i>Protein Science</i> , 2004 , 13, 211-20	6.3	154
88	Molecular view of hexagonal phase formation in phospholipid membranes. <i>Biophysical Journal</i> , 2004 , 87, 3894-900	2.9	167
87	Molecular dynamics simulation of the spontaneous formation of a small DPPC vesicle in water in atomistic detail. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4488-9	16.4	150
86	Coarse Grained Model for Semiquantitative Lipid Simulations. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 750-760	3.4	1767
85	The Binary Mixing Behavior of Phospholipids in a Bilayer: A Molecular Dynamics Study. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 2454-2463	3.4	104
84	Molecular dynamics simulations of hydrophilic pores in lipid bilayers. <i>Biophysical Journal</i> , 2004 , 86, 2156	5- £ .4j	248
83	Sampling and convergence in free energy calculations of protein-ligand interactions: the binding of triphenoxypyridine derivatives to factor Xa and trypsin. <i>Journal of Computer-Aided Molecular Design</i> , 2003, 17, 673-86	4.2	21
82	Relative stability of protein structures determined by X-ray crystallography or NMR spectroscopy: a molecular dynamics simulation study. <i>Proteins: Structure, Function and Bioinformatics</i> , 2003 , 53, 111-20	4.2	44
81	Monolayer ice. <i>Physical Review Letters</i> , 2003 , 91, 025502	7.4	195

80	The mechanism of vesicle fusion as revealed by molecular dynamics simulations. <i>Journal of the American Chemical Society</i> , 2003 , 125, 11144-5	16.4	278
79	The Influence of Trifluoromethyl Groups on the Miscibility of Fluorinated Alcohols with Water: A Molecular Dynamics Simulation Study of 1,1,1-Trifluoropropan-2-ol in Aqueous Solution. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 4855-4861	3.4	11
78	Understanding binding affinity: a combined isothermal titration calorimetry/molecular dynamics study of the binding of a series of hydrophobically modified benzamidinium chloride inhibitors to trypsin. <i>Journal of the American Chemical Society</i> , 2003 , 125, 10570-9	16.4	90
77	Simulation of MscL gating in a bilayer under stress. <i>Biophysical Journal</i> , 2003 , 84, 2331-7	2.9	67
76	Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. <i>Journal of the American Chemical Society</i> , 2003 , 125, 6382-3	16.4	363
75	Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles. <i>Journal of the American Chemical Society</i> , 2003 , 125, 15233-42	16.4	263
74	Bilayer ice and alternate liquid phases of confined water. <i>Journal of Chemical Physics</i> , 2003 , 119, 1694-1	7909	114
73	Computation of Free Energy. <i>Helvetica Chimica Acta</i> , 2002 , 85, 3113-3129	2	85
72	Calculation of the free energy of solvation for neutral analogs of amino acid side chains. <i>Journal of Computational Chemistry</i> , 2002 , 23, 548-53	3.5	157
71	Entropy calculations on the molten globule state of a protein: side-chain entropies of alpha-lactalbumin. <i>Proteins: Structure, Function and Bioinformatics</i> , 2002 , 46, 215-24	4.2	55
70	Folding and stability of the three-stranded beta-sheet peptide Betanova: insights from molecular dynamics simulations. <i>Proteins: Structure, Function and Bioinformatics</i> , 2002 , 46, 380-92	4.2	45
69	Signal transduction in the photoactive yellow protein. II. Proton transfer initiates conformational changes. <i>Proteins: Structure, Function and Bioinformatics</i> , 2002 , 48, 212-9	4.2	36
68	Signal transduction in the photoactive yellow protein. I. Photon absorption and the isomerization of the chromophore. <i>Proteins: Structure, Function and Bioinformatics</i> , 2002 , 48, 202-11	4.2	61
67	A comparison of methods for calculating NMR cross-relaxation rates (NOESY and ROESY intensities) in small peptides. <i>Journal of Biomolecular NMR</i> , 2002 , 23, 181-94	3	28
66	Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 12179-84	11.5	406
65	The Effect of the Neglect of Electronic Polarization in Peptide Folding Simulations. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 12830-12833	3.4	16
64	Molecular dynamics simulations of mixed micelles modeling human bile. <i>Biochemistry</i> , 2002 , 41, 5375-82	<u>2</u> 3.2	81
63	Dynamic Conformations of Flavin Adenine Dinucleotide: Simulated Molecular Dynamics of the Flavin Cofactor Related to the Time-Resolved Fluorescence Characteristics. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 8858-8869	3.4	113

62	Molecular dynamics study of the folding of hydrophobin SC3 at a hydrophilic/hydrophobic interface. <i>Biophysical Journal</i> , 2002 , 83, 112-24	2.9	44
61	Folding study of an Aib-rich peptide in DMSO by molecular dynamics simulations. <i>Chemical Biology and Drug Design</i> , 2001 , 57, 107-18		36
60	Free energy barrier estimation of unfolding the alpha-helical surfactant-associated polypeptide C. <i>Proteins: Structure, Function and Bioinformatics</i> , 2001 , 43, 395-402	4.2	9
59	Entropy calculations on a reversibly folding peptide: changes in solute free energy cannot explain folding behavior. <i>Proteins: Structure, Function and Bioinformatics</i> , 2001 , 43, 45-56	4.2	85
58	Further investigation on the validity of StokesEinstein behaviour at the molecular level. <i>Chemical Physics Letters</i> , 2001 , 334, 337-342	2.5	22
57	Model of 1,1,1,3,3,3-Hexafluoro-propan-2-ol for Molecular Dynamics Simulations. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 10967-10975	3.4	66
56	Essential dynamics of reversible peptide folding: memory-free conformational dynamics governed by internal hydrogen bonds. <i>Journal of Molecular Biology</i> , 2001 , 309, 299-313	6.5	119
55	Investigation of the mechanism of domain closure in citrate synthase by molecular dynamics simulation. <i>Journal of Molecular Biology</i> , 2001 , 310, 1039-53	6.5	44
54	Effect of Undulations on Surface Tension in Simulated Bilayers. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 6122-6127	3.4	237
53	Simulation of the spontaneous aggregation of phospholipids into bilayers. <i>Journal of the American Chemical Society</i> , 2001 , 123, 8638-9	16.4	223
52	Entropy calculations on a reversibly folding peptide: Changes in solute free energy cannot explain folding behavior 2001 , 43, 45		1
51	The GROMOS96 benchmarks for molecular simulation. <i>Computer Physics Communications</i> , 2000 , 128, 550-557	4.2	26
50	On the temperature and pressure dependence of a range of properties of a type of water model commonly used in high-temperature protein unfolding simulations. <i>Biophysical Journal</i> , 2000 , 78, 2752-	6 0 9	39
49	Molecular Dynamics Simulation of the Kinetics of Spontaneous Micelle Formation. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 12165-12173	3.4	248
48	A New 2,2,2-Trifluoroethanol Model for Molecular Dynamics Simulations. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 12347-12354	3.4	99
47	Absolute entropies from molecular dynamics simulation trajectories. <i>Journal of Chemical Physics</i> , 2000 , 113, 7809-7817	3.9	158
46	The effect of force-field parameters on properties of liquids: Parametrization of a simple three-site model for methanol. <i>Journal of Chemical Physics</i> , 2000 , 112, 10450-10459	3.9	120
45	On the validity of StokesPlaw at the molecular level. <i>Chemical Physics Letters</i> , 1999 , 303, 583-586	2.5	43

44	Peptide folding simulations: no solvent required?. Computer Physics Communications, 1999, 123, 97-102	4.2	32
43	Estimating relative free energies from a single ensemble: Hydration free energies. <i>Journal of Computational Chemistry</i> , 1999 , 20, 1604-1617	3.5	55
42	Folding-unfolding thermodynamics of a beta-heptapeptide from equilibrium simulations. <i>Proteins: Structure, Function and Bioinformatics</i> , 1999 , 34, 269-80	4.2	330
41	The effect of motional averaging on the calculation of NMR-derived structural properties 1999 , 36, 542	-555	83
40	Peptidfaltung: Wenn die Simulation das Experiment erreicht. <i>Angewandte Chemie</i> , 1999 , 111, 249-253	3.6	51
39	Peptide Folding: When Simulation Meets Experiment. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 236-240	16.4	1258
38	The GROMOS Biomolecular Simulation Program Package. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 3596-3607	2.8	1220
37	Estimating Relative Free Energies from a Single Simulation of the Initial State. <i>Lecture Notes in Computational Science and Engineering</i> , 1999 , 149-162	0.3	1
36	Peptide Folding: When Simulation Meets Experiment 1999 , 38, 236		54
35	On using time-averaging restraints in molecular dynamics simulation. <i>Journal of Biomolecular NMR</i> , 1998 , 12, 501-8	3	25
35 34		3	25335
	1998 , 12, 501-8	6.5	
34	Parametrization of aliphatic CHn united atoms of GROMOS96 force field 1998 , 19, 535-547 Reversible peptide folding in solution by molecular dynamics simulation. <i>Journal of Molecular</i>		335
34	Parametrization of aliphatic CHn united atoms of GROMOS96 force field 1998 , 19, 535-547 Reversible peptide folding in solution by molecular dynamics simulation. <i>Journal of Molecular Biology</i> , 1998 , 280, 925-32 Molecular dynamics simulations of peptide fragments from hen lysozyme: insight into non-native	6.5	335
34 33 32	Parametrization of aliphatic CHn united atoms of GROMOS96 force field 1998 , 19, 535-547 Reversible peptide folding in solution by molecular dynamics simulation. <i>Journal of Molecular Biology</i> , 1998 , 280, 925-32 Molecular dynamics simulations of peptide fragments from hen lysozyme: insight into non-native protein conformations. <i>Journal of Molecular Biology</i> , 1998 , 280, 703-19	6.5	335 340 12
34 33 32 31	Parametrization of aliphatic CHn united atoms of GROMOS96 force field 1998, 19, 535-547 Reversible peptide folding in solution by molecular dynamics simulation. <i>Journal of Molecular Biology</i> , 1998, 280, 925-32 Molecular dynamics simulations of peptide fragments from hen lysozyme: insight into non-native protein conformations. <i>Journal of Molecular Biology</i> , 1998, 280, 703-19 Validation of molecular dynamics simulation. <i>Journal of Chemical Physics</i> , 1998, 108, 6109-6116 Solvent structure at a hydrophobic protein surface. <i>Proteins: Structure, Function and Bioinformatics</i> ,	6.5 6.5 3.9	335 340 12 139
34 33 32 31 30	Parametrization of aliphatic CHn united atoms of GROMOS96 force field 1998, 19, 535-547 Reversible peptide folding in solution by molecular dynamics simulation. <i>Journal of Molecular Biology</i> , 1998, 280, 925-32 Molecular dynamics simulations of peptide fragments from hen lysozyme: insight into non-native protein conformations. <i>Journal of Molecular Biology</i> , 1998, 280, 703-19 Validation of molecular dynamics simulation. <i>Journal of Chemical Physics</i> , 1998, 108, 6109-6116 Solvent structure at a hydrophobic protein surface. <i>Proteins: Structure, Function and Bioinformatics</i> , 1997, 27, 395-404 Free Energies of Transfer of Trp Analogs from Chloroform to Water: Comparison of Theory and Experiment and the Importance of Adequate Treatment of Electrostatic and Internal Interactions.	6.5 6.5 3.9	335 340 12 139

26	Comparison of MD simulations and NMR experiments for hen lysozyme. Analysis of local fluctuations, cooperative motions, and global changes. <i>Biochemistry</i> , 1995 , 34, 10918-31	3.2	120
25	Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations. <i>Journal of Molecular Biology</i> , 1995 , 252, 492-503	6.5	332
24	The effect of environment on the stability of an integral membrane helix: molecular dynamics simulations of surfactant protein C in chloroform, methanol and water. <i>Journal of Molecular Biology</i> , 1995 , 247, 808-22	6.5	34
23	Computer simulation of protein motion. <i>Computer Physics Communications</i> , 1995 , 91, 305-319	4.2	48
22	Fundamentals of drug design from a biophysical viewpoint. <i>Quarterly Reviews of Biophysics</i> , 1994 , 27, 435-81	7	20
21	Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. <i>Chemical Physics Letters</i> , 1994 , 222, 529-539	2.5	819
20	Convergence Properties of Free Energy Calculations: .alphaCyclodextrin Complexes as a Case Study. <i>Journal of the American Chemical Society</i> , 1994 , 116, 6293-6302	16.4	150
19	Decomposition of the free energy of a system in terms of specific interactions. Implications for theoretical and experimental studies. <i>Journal of Molecular Biology</i> , 1994 , 240, 167-76	6.5	289
18	Investigation of shape variations in the antibody binding site by molecular dynamics computer simulation. <i>Journal of Molecular Biology</i> , 1994 , 236, 1186-95	6.5	15
17	Solvent-dependent conformation and hydrogen-bonding capacity of cyclosporin A: evidence from partition coefficients and molecular dynamics simulations. <i>Journal of Medicinal Chemistry</i> , 1993 , 36, 375	5 <i>7</i> -84	169
16	Can the stability of protein mutants be predicted by free energy calculations?. <i>Protein Engineering, Design and Selection</i> , 1993 , 6, 289-95	1.9	72
15	Dielectric properties of trypsin inhibitor and lysozyme calculated from molecular dynamics simulations. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 2009-2014		167
14	An approximate but efficient method to calculate free energy trends by computer simulation: application to dihydrofolate reductase-inhibitor complexes. <i>Journal of Computer-Aided Molecular Design</i> , 1993 , 7, 305-23	4.2	38
13	On the interpretation of biochemical data by molecular dynamics computer simulation 1993 , 63-77		
12	Simulation of the thermal denaturation of hen egg white lysozyme: trapping the molten globule state. <i>Biochemistry</i> , 1992 , 31, 7745-8	3.2	141
11	Prediction of the activity and stability effects of site-directed mutagenesis on a protein core. <i>Journal of Molecular Biology</i> , 1992 , 227, 389-95	6.5	39
10	Construction and molecular dynamics simulation of calmodulin in the extended and in a bent conformation. <i>FEBS Journal</i> , 1992 , 204, 931-7		24
9	On the interpretation of biochemical data by molecular dynamics computer simulation. <i>FEBS Journal</i> , 1992 , 204, 947-61		105

8	Conformational flexibility of aqueous monomeric and dimeric insulin: a molecular dynamics study. <i>Biochemistry</i> , 1991 , 30, 10866-72	3.2	39
7	Calculation of relative free energy via indirect pathways. <i>Journal of Chemical Physics</i> , 1991 , 94, 3808-381	6 .9	70
6	The self-association of zinc-free bovine insulin. Four model patterns and their significance. <i>Biological Chemistry Hoppe-Seyler</i> , 1990 , 371, 1165-74		21
5	The binding of an indefinitely associating ligand to acceptor: consideration of monovalent ligand species binding to a multivalent acceptor. <i>Journal of Theoretical Biology</i> , 1988 , 131, 137-49	2.3	4
4	The self-association of zinc-free bovine insulin. A single model based on interactions in the crystal that describes the association pattern in solution at pH 2, 7 and 10. <i>Biophysical Chemistry</i> , 1987 , 27, 103-3	₹ 7	25
3	Interaction of analogs of nicotinamide adenine dinucleotide phosphate with dihydrofolate reductase from Escherichia coli. <i>Biochemistry</i> , 1984 , 23, 4340-4346	3.2	13
2	Free Energy Perturbation Calculations		4
1	GROMOS Force Field		14