Kazuhiko Imakawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4214523/publications.pdf Version: 2024-02-01

		159585	197818
119	3,124	30	49
papers	citations	h-index	g-index
100	100	100	2051
123	123	123	2051
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Epithelial-mesenchymal transition and bi- and multi-nucleated trophoblast cell formation in ovine conceptuses during the peri-implantation period. Journal of Reproduction and Development, 2022, 68, 110-117.	1.4	7
2	Epithelial-mesenchymal transition process during embryo implantation. Cell and Tissue Research, 2022, 388, 1-17.	2.9	12
3	Characterization of IncRNA functioning in ovine conceptuses and endometria during the peri-implantation period. Biochemical and Biophysical Research Communications, 2022, 594, 22-30.	2.1	2
4	Characterization of Serum Metabolome and Proteome Profiles Identifies SNX5 Specific for Pregnancy Failure in Holstein Heifers. Life, 2022, 12, 309.	2.4	4
5	A target enrichment high throughput sequencing system for characterization of BLV whole genome sequence, integration sites, clonality and host SNP. Scientific Reports, 2021, 11, 4521.	3.3	11
6	Neutrophils recognize and amplify IFNT signals derived from day 7 bovine embryo for stimulation of ISGs expression inÂvitro: A possible implication for the early maternal recognition of pregnancy. Biochemical and Biophysical Research Communications, 2021, 553, 37-43.	2.1	6
7	Formation of fibrin at sites of conceptus adhesion in the ewe. Reproduction, 2021, 161, 709-720.	2.6	4
8	Day 7 Embryos Change the Proteomics and Exosomal Micro-RNAs Content of Bovine Uterine Fluid: Involvement of Innate Immune Functions. Frontiers in Genetics, 2021, 12, 676791.	2.3	7
9	The effect of bta-miR-26b in intrauterine extracellular vesicles on maternal immune system during the implantation period. Biochemical and Biophysical Research Communications, 2021, 573, 100-106.	2.1	15
10	Increasing Bovine leukemia virus (BLV) proviral load is a risk factor for progression of Enzootic bovine leucosis: A prospective study in Japan. Preventive Veterinary Medicine, 2020, 178, 104680.	1.9	29
11	Peptidoglycan disrupts early embryo-maternal crosstalk via suppression of ISGs expression induced by interferon-tau in the bovine endometrium. Biochemical and Biophysical Research Communications, 2020, 532, 101-107.	2.1	3
12	Emerging Role of Extracellular Vesicles in Embryo–Maternal Communication throughout Implantation Processes. International Journal of Molecular Sciences, 2020, 21, 5523.	4.1	16
13	Sensing sperm via maternal immune system: a potential mechanism for controlling microenvironment for fertility in the cow. Journal of Animal Science, 2020, 98, S88-S95.	0.5	9
14	Promoting Roles of Embryonic Signals in Embryo Implantation and Placentation in Cooperation with Endocrine and Immune Systems. International Journal of Molecular Sciences, 2020, 21, 1885.	4.1	29
15	Roadmap to pregnancy in the first 7 days post-insemination in the cow: Immune crosstalk in the corpus luteum, oviduct, and uterus. Theriogenology, 2020, 150, 313-320.	2.1	16
16	IFNT-independent effects of intrauterine extracellular vesicles (EVs) in cattle. Reproduction, 2020, 159, 503-511.	2.6	19
17	Genetic variation in Japanese Holstein cattle for EBL development. BMC Veterinary Research, 2020, 16, 407.	1.9	3
18	TLR2/4 signaling pathway mediates sperm-induced inflammation in bovine endometrial epithelial cells in vitro. PLoS ONE, 2019, 14, e0214516.	2.5	50

#	Article	IF	CITATIONS
19	Effects of miR-98 in intrauterine extracellular vesicles on maternal immune regulation during the peri-implantation period in cattle. Scientific Reports, 2019, 9, 20330.	3.3	45
20	Novel crosstalk between Vps26a and Nox4 signaling during neurogenesis. Cell Death and Differentiation, 2019, 26, 1582-1599.	11.2	8
21	Dayâ€7 embryos generate an antiâ€inflammatory immune response in peripheral blood immune cells in superovulated cows. American Journal of Reproductive Immunology, 2019, 81, e13069.	1.2	10
22	Regulation of human trophoblast cell syncytialization by transcription factors STAT5B and NR4A3. Journal of Cellular Biochemistry, 2018, 119, 4918-4927.	2.6	26
23	A proinflammatory response of bovine endometrial epithelial cells to active sperm in vitro. Molecular Reproduction and Development, 2018, 85, 215-226.	2.0	41
24	Evidence that interferon-tau secreted from Day-7 embryo inÂvivo generates anti-inflammatory immune response in the bovine uterus. Biochemical and Biophysical Research Communications, 2018, 500, 879-884.	2.1	25
25	Regulation of conceptus interferon-tau gene subtypes expressed in the uterus during the peri-implantation period of cattle. Animal Reproduction Science, 2018, 190, 39-46.	1.5	5
26	Integration of molecules to construct the processes of conceptus implantation to the maternal endometrium. Journal of Animal Science, 2018, 96, 3009-3021.	0.5	24
27	Intrauterine exosomes are required for bovine conceptus implantation. Biochemical and Biophysical Research Communications, 2018, 495, 1370-1375.	2.1	75
28	Potential roles of metalloproteinases of endometriumâ€derived exosomes in embryoâ€maternal crosstalk during implantation. Journal of Cellular Physiology, 2018, 233, 4530-4545.	4.1	35
29	Induction of immune-related gene expression by seminal exosomes in the porcine endometrium. Biochemical and Biophysical Research Communications, 2018, 495, 1094-1101.	2.1	56
30	Oviduct epithelium induces interferon-tau in bovine Day-4 embryos, which generates an anti-inflammatory response in immune cells. Scientific Reports, 2018, 8, 7850.	3.3	35
31	Downâ€regulation of transcription factor OVOL2 contributes to epithelial–mesenchymal transition in a noninvasive type of trophoblast implantation to the maternal endometrium. FASEB Journal, 2018, 32, 3371-3384.	0.5	43
32	Exchange protein directly activated by cAMP (EPAC) promotes transcriptional activation of the decidual prolactin gene via CCAAT/enhancer-binding protein in human endometrial stromal cells. Reproduction, Fertility and Development, 2018, 30, 1454.	0.4	4
33	Factors Regulating Human Extravillous Trophoblast Invasion: Chemokine-peptidase and CD9-integrin Systems. Current Pharmaceutical Biotechnology, 2018, 19, 764-770.	1.6	12
34	Continuous model of conceptus implantation to the maternal endometrium. Journal of Endocrinology, 2017, 233, R53-R65.	2.6	31
35	The Phylogeny of Placental Evolution Through Dynamic Integrations of Retrotransposons. Progress in Molecular Biology and Translational Science, 2017, 145, 89-109.	1.7	32
36	Thirty years of interferonâ€ŧau research; Past, present and future perspective. Animal Science Journal, 2017, 88, 927-936.	1.4	12

#	Article	IF	CITATIONS
37	Novel endogenous retrovirus-derived transcript expressed in the bovine placenta is regulated by WNT signaling. Biochemical Journal, 2017, 474, 3499-3512.	3.7	8
38	Increase in complement iC3b is associated with anti-inflammatory cytokine expression during late pregnancy in mice. PLoS ONE, 2017, 12, e0178442.	2.5	10
39	Successful pregnancy and live birth from a hypogonadotropic hypogonadism woman with low serum estradiol concentrations despite numerous oocyte maturations: a case report. BMC Pregnancy and Childbirth, 2017, 17, 312.	2.4	Ο
40	Expression of uterine lipocalin 2 and its receptor during early- to mid-pregnancy period in mares. Journal of Reproduction and Development, 2017, 63, 127-133.	1.4	6
41	Bovine embryo induces an anti-inflammatory response in uterine epithelial cells and immune cells <i>in vitro</i> : possible involvement of interferon tau as an intermediator. Journal of Reproduction and Development, 2017, 63, 425-434.	1.4	33
42	Estrous cycle stage-dependent manner of type I interferon-stimulated genes induction in the bovine endometrium. Journal of Reproduction and Development, 2017, 63, 211-220.	1.4	12
43	Endometrial factors similarly induced by IFNT2 and IFNTc1 through transcription factor FOXS1. PLoS ONE, 2017, 12, e0171858.	2.5	21
44	Transcriptional control of IFNT expression. Reproduction, 2017, 154, F21-F31.	2.6	25
45	Induction of IFNT-Stimulated Genes by Conceptus-Derived Exosomes during the Attachment Period. PLoS ONE, 2016, 11, e0158278.	2.5	77
46	Regulation of epithelial to mesenchymal transition in bovine conceptuses through the interaction between follistatin and activin A. Molecular and Cellular Endocrinology, 2016, 434, 81-92.	3.2	22
47	Dual Positive Regulation of Embryo Implantation by Endocrine and Immune Systems – Stepâ€byâ€Step Maternal Recognition of the Developing Embryo. American Journal of Reproductive Immunology, 2016, 75, 281-289.	1.2	22
48	A transcriptional cofactor YAP regulates IFNT expression via transcription factor TEAD in bovine conceptuses. Domestic Animal Endocrinology, 2016, 57, 21-30.	1.6	20
49	CITED2 modulation of trophoblast cell differentiation: insights from global transcriptome analysis. Reproduction, 2016, 151, 509-516.	2.6	12
50	Conceptus implantation and placentation: molecules related to epithelial–mesenchymal transition, lymphocyte homing, endogenous retroviruses, and exosomes. Reproductive Medicine and Biology, 2016, 15, 1-11.	2.4	11
51	Characterizations of the Bovine Subtype Interferon-tau Genes: Sequences of Genes and Biological Activity of Transcription Factors in JEG3 Cell. Journal of Animal Reproduciton and Biotechnology, 2016, 31, 335-347.	0.6	1
52	Baton pass hypothesis: successive incorporation of unconserved endogenous retroviral genes for placentation during mammalian evolution. Genes To Cells, 2015, 20, 771-788.	1.2	61
53	Regulatory Action of Calcium Ion on Cyclic AMP-Enhanced Expression of Implantation-Related Factors in Human Endometrial Cells. PLoS ONE, 2015, 10, e0132017.	2.5	26
54	The Role of Endometrial Selectins and Their Ligands on Bovine Conceptus Attachment to the Uterine Epithelium During Peri-Implantation Period1. Biology of Reproduction, 2015, 93, 46.	2.7	25

#	Article	IF	CITATIONS
55	EPAC2-mediated calreticulin regulates LIF and COX2 expression in human endometrial glandular cells. Journal of Molecular Endocrinology, 2015, 54, 17-24.	2.5	20
56	The localization of <scp>GATA2</scp> in the nuclear and cytoplasmic regions of ovine conceptuses. Animal Science Journal, 2014, 85, 981-985.	1.4	1
57	Expression and <i>in situ</i> localization of <i><scp>GATA4</scp>, 5</i> and <i>6</i> â€ <scp>mRNAs</scp> in ovine conceptuses and uterine endometria during the periâ€implantation period. Animal Science Journal, 2014, 85, 388-394.	1.4	3
58	Involvement of VCAM1 in the bovine conceptus adhesion to the uterine endometrium. Reproduction, 2014, 148, 119-127.	2.6	36
59	Establishment and characterization of immortalized bovine endometrial epithelial cells. Animal Science Journal, 2014, 85, 799-804.	1.4	7
60	RNA-Seq Analysis of Equine Conceptus Transcripts during Embryo Fixation and Capsule Disappearance. PLoS ONE, 2014, 9, e114414.	2.5	3
61	Changes in Gene Expression Associated with Conceptus Implantation to the Maternal Endometrium. Journal of Mammalian Ova Research, 2013, 30, 2-10.	0.1	1
62	Dynamic Evolution of Endogenous Retrovirus-Derived Genes Expressed in Bovine Conceptuses during the Period of Placentation. Genome Biology and Evolution, 2013, 5, 296-306.	2.5	30
63	Downâ€regulation of interferon tau gene transcription with a transcription factor, EOMES. Molecular Reproduction and Development, 2013, 80, 371-383.	2.0	20
64	Expression and Potential Role of GATA Factors in Trophoblast Development. Journal of Reproduction and Development, 2013, 59, 1-6.	1.4	39
65	Transcriptional Regulation of Two Conceptus Interferon Tau Genes Expressed in Japanese Black Cattle during Peri-Implantation Period. PLoS ONE, 2013, 8, e80427.	2.5	12
66	Expression of Endometrial Immune-related Genes Possibly Functioning During Early Pregnancy in the Mare. Journal of Reproduction and Development, 2013, 59, 85-91.	1.4	8
67	Regulation of Interferon-stimulated Gene (<italic>ISG</italic>) <italic>12</italic> , <italic>ISG15</italic> , and <italic>MX1</italic> and <italic>MX2</italic> by Conceptus Interferons (IFNTs) in Bovine Uterine	2.4	23
68	Epithelial Cells: Asian Australasian Journal of Animal Sciences, 2013, 26, 795-803. Presence of Transcription Factor OCT4 Limits Interferon-tau Expression during the Pre-attachment Period in Sheep. Asian-Australasian Journal of Animal Sciences, 2013, 26, 638-645.	2.4	7
69	Expression of mesenchymal-related genes by the bovine trophectoderm following conceptus attachment to the endometrial epithelium. Reproduction, 2012, 143, 377-387.	2.6	62
70	Coculture System That Mimics In Vivo Attachment Processes in Bovine Trophoblast Cells1. Biology of Reproduction, 2012, 87, 60.	2.7	34
71	Expression and Potential Role of GATA6 in Ruminant Trophoblasts during Peri-Implantation Periods. Journal of Mammalian Ova Research, 2012, 29, 135-141.	0.1	2
72	Expression of GATA1 in the ovine conceptus and endometrium during the periâ€attachment period. Molecular Reproduction and Development, 2012, 79, 64-73.	2.0	11

#	Article	IF	CITATIONS
73	Functions of interferon tau as an immunological regulator for establishment of pregnancy. Reproductive Medicine and Biology, 2012, 11, 109-116.	2.4	14
74	Binding of transcription factor activating protein 2 γ on the 5â€2â€proximal promoter region of human porcine endogenous retrovirus subgroup A receptor 2/GPR172B. Xenotransplantation, 2012, 19, 177-185.	2.8	4
75	Retroviral Endogenization and Its Role in the Genital Tract during Mammalian Evolution. Journal of Mammalian Ova Research, 2011, 28, 203-218.	0.1	7
76	Regulation of Trophoblast-Specific Factors by GATA2 and GATA3 in Bovine Trophoblast CT-1 Cells. Journal of Reproduction and Development, 2011, 57, 518-525.	1.4	35
77	Production of Calcium Maintenance Factor Stanniocalcin-1 (STC1) by the Equine Endometrium During the Early Pregnant Period. Journal of Reproduction and Development, 2011, 57, 203-211.	1.4	12
78	Identification and characterization of full-length vps29 gene in five mammalian species. Genes and Genomics, 2011, 33, 505-512.	1.4	0
79	Identification of Novel Endogenous Betaretroviruses Which Are Transcribed in the Bovine Placenta. Journal of Virology, 2011, 85, 1237-1245.	3.4	36
80	Intrauterine administration of peripheral blood mononuclear cells enhances early development of the preâ€implantation bovine embryo. Molecular Reproduction and Development, 2010, 77, 954-962.	2.0	22
81	Function of a Transcription Factor CDX2 Beyond Its Trophectoderm Lineage Specification. Endocrinology, 2010, 151, 5873-5881.	2.8	36
82	CD9 regulates transcription factor GCM1 and ERVWE1 expression through the cAMP/protein kinase A signaling pathway. Reproduction, 2009, 138, 945-951.	2.6	29
83	Induction of Endogenous Interferon Tau Gene Transcription by CDX2 and High Acetylation in Bovine Nontrophoblast Cells1. Biology of Reproduction, 2009, 80, 1223-1231.	2.7	51
84	Involvement of GATA transcription factors in the regulation of endogenous bovine interferonâ€Tau gene transcription. Molecular Reproduction and Development, 2009, 76, 1143-1152.	2.0	45
85	Molecular Mechanisms Associated with Conceptus-Endometrium Interactions During the Peri-Implantation Period in Ruminants. Journal of Mammalian Ova Research, 2009, 26, 98-110.	0.1	2
86	Regulation of the ovine interferon-tau gene by a blastocyst-specific transcription factor, Cdx2. Molecular Reproduction and Development, 2006, 73, 559-567.	2.0	42
87	Regulation of conceptus adhesion by endometrial CXC chemokines during the implantation period in sheep. Molecular Reproduction and Development, 2006, 73, 850-858.	2.0	52
88	Regulation of embryo outgrowth by a morphogenic factor, epimorphin, in the mouse. Molecular Reproduction and Development, 2005, 70, 455-463.	2.0	14
89	Different levels of ovine interferon-Ï" gene expressions are regulated through the short promoter region including Ets-2 binding site. Molecular Reproduction and Development, 2005, 72, 7-15.	2.0	5
90	Changes in Immune Cell Distribution and IL-10 Production are Regulated through Endometrial IP-10 Expression in the Goat Uterus. American Journal of Reproductive Immunology, 2005, 53, 54-64.	1.2	35

#	Article	IF	CITATIONS
91	Effects of Progranulin on Blastocyst Hatching and Subsequent Adhesion and Outgrowth in the Mouse1. Biology of Reproduction, 2005, 73, 434-442.	2.7	46
92	Pre-Implantation Conceptus and Maternal Uterine Communications: Molecular Events Leading to Successful Implantation. Journal of Reproduction and Development, 2004, 50, 155-169.	1.4	36
93	Increase in DNA methylation downregulates conceptus interferon-tau gene expression. Molecular Reproduction and Development, 2004, 67, 396-405.	2.0	16
94	Coactivator CBP in the regulation of conceptus IFN? gene transcription. Molecular Reproduction and Development, 2003, 65, 23-29.	2.0	22
95	Regulation of Blastocyst Migration, Apposition, and Initial Adhesion by a Chemokine, Interferon γ-inducible Protein 10 kDa (IP-10), during Early Gestation. Journal of Biological Chemistry, 2003, 278, 29048-29056.	3.4	84
96	A Chemokine, Interferon (IFN)-γ-Inducible Protein 10 kDa, Is Stimulated by IFN-τ and Recruits Immune Cells in the Ovine Endometrium1. Biology of Reproduction, 2003, 68, 1413-1421.	2.7	63
97	Use of DNA Array to Screen Blastocyst Genes Potentially Involved in the Process of Murine Implantation. Journal of Reproduction and Development, 2003, 49, 473-484.	1.4	8
98	Temporal Expression of Type I Interferon Receptor in the Peri-Implantation Ovine Extra-Embryonic Membranes: Demonstration that Human IFN.ALPHA. Can Bind to This Receptor Endocrine Journal, 2002, 49, 195-205.	1.6	37
99	Long Term Selection for Small Body Weight in Japanese Quail. I: Direct Selection Response from 60 to 65th Generations Journal of Poultry Science, 2002, 39, 274-284.	1.6	3
100	Differentiation of Pregnant Shiba Goats Using Plasma Amino Acid Concentrations and Mathematical Analysis Journal of Reproduction and Development, 2002, 48, 523-529.	1.4	0
101	Enhancer regions of ovine interferon-Ï" gene that confer PMA response or cell type specific transcription. Molecular and Cellular Endocrinology, 2001, 173, 147-155.	3.2	14
102	Induction of Short Ovulatory Cycle in Shiba-Goats by Repeated Treatments with Prostaglandin F2.ALPHA Journal of Reproduction and Development, 2001, 47, 97-103.	1.4	0
103	Regulation of InterferonTAU. Gene Expression and the Maternal Recognition of Pregnancy Journal of Reproduction and Development, 2001, 47, 69-82.	1.4	4
104	Analysis of Possible Silencer Elements of Ovine InterferonTAU. Gene Endocrine Journal, 2000, 47, 137-142.	1.6	6
105	The poly(A) tail length of casein mRNA in the lactating mammary gland changes depending upon the accumulation and removal of milk. Biochemical Journal, 2000, 347, 579-583.	3.7	20
106	Effects of PMA and Transcription Factors on Ovine InterferonTAU. Transactivation in Various Cell Lines Endocrine Journal, 1999, 46, 383-388.	1.6	8
107	Identification of a functional transcriptional factor AP-1 site in the sheep interferon Ï,, gene that mediates a response to PMA in JEG3 cells. Biochemical Journal, 1999, 340, 767-773.	3.7	28
108	Identification of a functional transcriptional factor AP-1 site in the sheep interferon Ï,, gene that mediates a response to PMA in JEG3 cells. Biochemical Journal, 1999, 340, 767.	3.7	21

#	Article	IF	CITATIONS
109	Identification of Interferon-Tau at the Maternal-Fetal Interface in Shiba Goats Journal of Reproduction and Development, 1999, 45, 249-257.	1.4	4
110	Co-Expression of Transforming Growth Factor .BETA. and Interferon .TAU. During Peri-Implantation Period in the Ewe Endocrine Journal, 1998, 45, 441-450.	1.6	17
111	Effects of Weaning and Suckling on γ-Casein and Prolactin Receptor mRNA Levels in the Mouse Mammary Gland during Lactation. Nihon Chikusan Gakkaiho, 1998, 69, 728-733.	0.2	0
112	Differential Expression of Distinct mRNAs for Ovine Trophoblast Protein-1 and Related Sheep Type I Interferons1. Biology of Reproduction, 1993, 48, 768-778.	2.7	58
113	The Production, Purification, and Bioactivity of Recombinant Bovine Trophoblast Protein-1 (Bovine) Tj ETQq1 1 0.	784314 rg 3.7	gBT /Overlo
114	Molecular Cloning and Characterization of Complementary Deoxyribonucleic Acids Corresponding to Bovine Trophoblast Protein-1: A Comparison with Ovine Trophoblast Protein-1 and Bovine Interferon-α _{II} . Molecular Endocrinology, 1989, 3, 127-139.	3.7	167
115	Suppression of Tâ€Lymphocyte Blastogenesis by Ovine Trophoblast Proteinâ€1 and Human Interferonâ€Î± May Be Independent of Interleukinâ€2 Production. American Journal of Reproductive Immunology, 1989, 20, 21-26.	1.2	23
116	Interferon-like sequence of ovine trophoblast protein secreted by embryonic trophectoderm. Nature, 1987, 330, 377-379.	27.8	451
117	Phylogenomics and Spatiotemporal Dynamics of Bovine Leukemia Virus Focusing on Asian Native Cattle: Insights Into the Early Origin and Global Dissemination. Frontiers in Microbiology, 0, 13, .	3.5	1
118	New Roles for EVs, miRNA and IncRNA in Bovine Embryo Implantation. Frontiers in Veterinary Science, O, 9, .	2.2	7
119	Intrauterine infusion of low levels of interferonâ€ŧau on dayâ€8 postâ€estrus stimulates the bovine endometrium to secrete apolipoproteinâ€A1: A possible implication for early embryo tolerance. American Journal of Reproductive Immunology, 0, , .	1.2	0