Maurizio Bellotto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4214407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Capture and Release Mechanism of Ni and La Ions via Solid/Liquid Process: Use of Polymer-Modified Clay and Activated Carbons. Polymers, 2022, 14, 485.	4.5	2
2	Influence of supplementary cementitious materials on factors controlling the fresh state of hydraulic binders. Materials Today: Proceedings, 2022, , .	1.8	0
3	Small oscillatory rheology and cementitious particle interactions. Cement and Concrete Research, 2022, 157, 106790.	11.0	8
4	Capture and release mechanism of La ions by new polyamine-based organoclays: A model system for rare-earths recovery in urban mining process. Journal of Environmental Chemical Engineering, 2021, 9, 104730.	6.7	7
5	Influence of cellulose nanofibrils on the rheology, microstructure and strength of alkali activated ground granulated blast-furnace slag: a comparison with ordinary Portland cement. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	3.1	16
6	Capture Mechanism of La and Cu Ions in Mixed Solutions by Clay and Organoclay. Industrial & Engineering Chemistry Research, 2021, 60, 6803-6813.	3.7	10
7	Heavy-Metal Phytoremediation from Livestock Wastewater and Exploitation of Exhausted Biomass. International Journal of Environmental Research and Public Health, 2021, 18, 2239.	2.6	36
8	Wastewater Treatment Using Alkali-Activated-Based Sorbents Produced from Blast Furnace Slag. Applied Sciences (Switzerland), 2021, 11, 2985.	2.5	7
9	A Fresh View on Limestone Calcined Clay Cement (LC3) Pastes. Materials, 2021, 14, 3037.	2.9	24
10	Natural Clays as Potential Amino Acids Carriers for Animal Nutrition Application. Applied Sciences (Switzerland), 2021, 11, 5669.	2.5	2
11	Natural additives and biopolymers for raw earth construction stabilization – a review. Construction and Building Materials, 2021, 304, 124507.	7.2	53
12	Reduced Graphene Oxide Membranes as Potential Self-Assembling Filter for Wastewater Treatment. Minerals (Basel, Switzerland), 2021, 11, 15.	2.0	10
13	Rare Earths (La, Y, and Nd) Adsorption Behaviour towards Mineral Clays and Organoclays: Monoionic and Trionic Solutions. Minerals (Basel, Switzerland), 2021, 11, 30.	2.0	13
14	Stabilization of lead contaminated soil with traditional and alternative binders. Journal of Hazardous Materials, 2020, 382, 120990.	12.4	59
15	Compositional characterization of Etruscan earthen architecture and ceramic production. Archaeometry, 2020, 62, 1130-1144.	1.3	7
16	Simple ions control the elasticity of calcite gels via interparticle forces. Journal of Colloid and Interface Science, 2019, 553, 280-288.	9.4	9
17	On the preparation of concentrated gypsum slurry to reuse sulfate-process TiO2 byproduct stream. Journal of Cleaner Production, 2018, 195, 1468-1475.	9.3	3
18	Characterization of clays and the technology of Roman ceramics production. Clay Minerals, 2018, 53, 413-429	0.6	3

MAURIZIO BELLOTTO

#	Article	IF	CITATIONS
19	Particle packing and rheology of cement pastes at different replacement levels of cement by α-Al2O3 submicron particles. Construction and Building Materials, 2017, 139, 256-266.	7.2	18
20	Elasticity and yielding of a calcite paste: scaling laws in a dense colloidal suspension. Soft Matter, 2017, 13, 2014-2023.	2.7	28
21	5. Role of hydrotalcite-type layered double hydroxides in delayed pozzolanic reactions and their bearing on mortar dating. , 2017, , 147-158.		11
22	Cement paste prior to setting: A rheological approach. Cement and Concrete Research, 2013, 52, 161-168.	11.0	62
23	Optimization of Anti-creep Admixtures for Plasterboards. , 2013, , .		1
24	A dynamic leaching method for the assessment of trace metals released from hydraulic binders. Waste Management, 2002, 22, 153-157.	7.4	21
25	Time- and space-resolved dynamic studies on ceramic and cementitious materials. Journal of Synchrotron Radiation, 2000, 7, 167-177.	2.4	23
26	Title is missing!. Journal of Materials Science, 1999, 34, 2609-2620.	3.7	29
27	On the Crystal Structure and Cation Valence of Mn in Mn-Substituted Ba-β-Al2O3. Journal of Catalysis, 1998, 179, 597-605.	6.2	70
28	Modelling the structure of the metastable phases in the reaction sequence kaolinite-mullite by X-ray scattering experiments. Physics and Chemistry of Minerals, 1998, 25, 442-452.	0.8	77
29	Thermal Expansion of C ₃ S and Mg-Doped Alite. Materials Science Forum, 1998, 278-281, 384-389.	0.3	3
30	Mechanism of Pseudo-Boehmite Dehydration: Influence of Reagent Structure and Reaction Kinetics on the Transformation Sequence. Materials Science Forum, 1998, 278-281, 572-577.	0.3	12
31	The Role of Powder X-Ray Diffraction in the Cement Industry: Recent Advances and Future Developments. Materials Science Forum, 1998, 278-281, 846-851.	0.3	2
32	Contribution à la détermination de la structure de l'alite par diffraction des rayons X sur poudres. European Physical Journal Special Topics, 1998, 08, Pr5-511-Pr5-518.	0.2	0
33	A Reexamination of Hydrotalcite Crystal Chemistry. The Journal of Physical Chemistry, 1996, 100, 8527-8534.	2.9	396
34	Mn crystal chemistry in pumpellyite; a resonant scattering powder diffraction Rietveld study using synchrotron radiation. American Mineralogist, 1996, 81, 603-610.	1.9	17
35	Hydrotalcite Decomposition Mechanism:Â A Clue to the Structure and Reactivity of Spinel-like Mixed Oxides. The Journal of Physical Chemistry, 1996, 100, 8535-8542.	2.9	233
36	Hydrotalcite Thermal Decomposition Mechanism: In Situ Study by XRD, AWAXS and EXAFS of a Layered Catalyst Precursor. Materials Science Forum, 1996, 228-231, 347-352.	0.3	0

MAURIZIO BELLOTTO

#	Article	IF	CITATIONS
37	Assessment of an In-Situ Reactor Cell: Temperature Calibration and Reliability of Diffracted Intensity. Materials Science Forum, 1996, 228-231, 153-160.	0.3	0
38	The Crystal Structure of Ba-β-Alumina Materials for High-Temperature Catalytic Combustion. Journal of Solid State Chemistry, 1995, 114, 326-336.	2.9	55
39	FT-IR Skeletal Powder Spectra of Ba-Î ² -Aluminas with Compositions BaAl9O14.5, BaAl12O19, and BaAl14O22 and of Ba-Ferrite, BaFe12O19. Journal of Solid State Chemistry, 1995, 117, 8-15.	2.9	44
40	Kinetic study of the kaolinite-mullite reaction sequence. Part I: Kaolinite dehydroxylation. Physics and Chemistry of Minerals, 1995, 22, 207.	0.8	179
41	Kinetic study of the kaolinite-mullite reaction sequence. Part II: Mullite formation. Physics and Chemistry of Minerals, 1995, 22, 215.	0.8	119
42	Nature of Structural Disorder in Natural Kaolinites: A New Model Based on Computer Simulation of Powder Diffraction Data and Electrostatic Energy Calculation. Clays and Clay Minerals, 1995, 43, 438-445.	1.3	53
43	High Temperature Phase Transitions in Kaolinite: The Influence of Disorder and Kinetics on the Reaction Path. Materials Science Forum, 1994, 166-169, 3-22.	0.3	11
44	High Temperature Phase Transition of Muscovite-2 <i>M</i> ₁ : Angle and Energy Dispersive Powder Diffraction Studies. Materials Science Forum, 1994, 166-169, 547-552.	0.3	4
45	Phase composition and mechanism of formation of Ba-Î ² -alumina-type systems for catalytic combustion prepared by precipitation. Journal of Materials Science, 1994, 29, 3441-3450.	3.7	86
46	High-temperature <i>in situ</i> Rietveld study of Fe,Mg cation partitioning in olivine. Powder Diffraction, 1994, 9, 63-67.	0.2	5
47	Preparation and characterization of hexaaluminate-based materials for catalytic combustion. Applied Catalysis A: General, 1993, 104, 101-108.	4.3	165
48	Influence of the oxygen stoichiometry on the structural and optical properties of reactively evaporated ZrOxfilms. Applied Physics Letters, 1993, 63, 2056-2058.	3.3	20
49	On the morphological properties of tungsta-titania de-NO _{<i>x</i>} ing catalysts. Journal of Materials Research, 1993, 8, 2019-2025.	2.6	45
50	Quantitative X-Ray Diffraction Rietveld Analysis of Low Temperature Coal Ashes. Materials Science Forum, 1991, 79-82, 745-750.	0.3	12
51	Inhomogeneity and Microstructure in e-Beam Evaporated ZrO ₂ Films. Materials Research Society Symposia Proceedings, 1990, 208, 137.	0.1	3
52	Fly ash from a coal power plant: Correlation of elemental and structural composition with electrostatic precipitator collection efficiency. Journal of Aerosol Science, 1990, 21, S697-S701.	3.8	3
53	Preparation chemistry and phase transformations in the Zn-Mn-Cr-O systemâ [~] †. Solid State Ionics, 1989, 32-33, 112-122.	2.7	2
54	Structural investigation on a spinel-related Zn/Cr = 1 mixed-oxide system. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 895.	1.0	9

#	Article	IF	CITATIONS
55	Crystal structures of quartz and magnesium germanate by profile analysis of synchrotron-radiation high-resolution powder data. Journal of Applied Crystallography, 1988, 21, 182-191.	4.5	139
56	The refractive-index correction in powder diffraction. Acta Crystallographica Section A: Foundations and Advances, 1988, 44, 193-197.	0.3	24
57	Grazing incidence synchrotron x-ray diffraction method for analyzing thin films. Journal of Materials Research, 1987, 2, 471-477.	2.6	159
58	Lattice Parameter Determination using Synchrotron Powder Data. , 1987, , 373-382.		3
59	Lattice Parameter Determination Using Synchrotron Powder Data. Advances in X-ray Analysis, 1986, 30, 373-382.	0.0	2