Paola Verlicchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4214000/publications.pdf

Version: 2024-02-01

50 papers

5,207 citations

304743

22

h-index

243625 44 g-index

53 all docs 53 docs citations

53 times ranked

5905 citing authors

#	Article	IF	CITATIONS
1	Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatmentâ€"A review. Science of the Total Environment, 2012, 429, 123-155.	8.0	1,681
2	Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options. Journal of Hydrology, 2010, 389, 416-428.	5.4	635
3	Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Science of the Total Environment, 2012, 430, 109-118.	8.0	475
4	Pharmaceuticals and personal care products in untreated and treated sewage sludge: Occurrence and environmental risk in the case of application on soil $\hat{a} \in \mathbb{Z}$ A critical review. Science of the Total Environment, 2015, 538, 750-767.	8.0	382
5	Monitoring release of pharmaceutical compounds: Occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Science of the Total Environment, 2012, 438, 15-25.	8.0	309
6	How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review. Science of the Total Environment, 2014, 470-471, 1281-1306.	8.0	259
7	What have we learned from worldwide experiences on the management and treatment of hospital effluent? — An overview and a discussion on perspectives. Science of the Total Environment, 2015, 514, 467-491.	8.0	242
8	A framework for the assessment of the environmental risk posed by pharmaceuticals originating from hospital effluents. Science of the Total Environment, 2014, 493, 54-64.	8.0	128
9	Comparison of measured and predicted concentrations of selected pharmaceuticals in wastewater and surface water: A case study of a catchment area in the Po Valley (Italy). Science of the Total Environment, 2014, 470-471, 844-854.	8.0	127
10	Removal of selected pharmaceuticals from domestic wastewater in an activated sludge system followed by a horizontal subsurface flow bed — Analysis of their respective contributions. Science of the Total Environment, 2013, 454-455, 411-425.	8.0	109
11	A review of the occurrence of selected micropollutants and microorganisms in different raw and treated manure – Environmental risk due to antibiotics after application to soil. Science of the Total Environment, 2020, 707, 136118.	8.0	106
12	Removal and accumulation of Cu, Ni and Zn in horizontal subsurface flow constructed wetlands: Contribution of vegetation and filling medium. Science of the Total Environment, 2010, 408, 5097-5105.	8.0	102
13	Management of hospital wastewaters: the case of the effluent of a large hospital situated in a small town. Water Science and Technology, 2010, 61, 2507-2519.	2.5	74
14	Paracetamol removal in subsurface flow constructed wetlands. Journal of Hydrology, 2011, 404, 130-135.	5.4	72
15	Predicted and measured concentrations of pharmaceuticals in hospital effluents. Examination of the strengths and weaknesses of the two approaches through the analysis of a case study. Science of the Total Environment, 2016, 565, 82-94.	8.0	60
16	Activated carbon coupled with advanced biological wastewater treatment: A review of the enhancement in micropollutant removal. Science of the Total Environment, 2021, 790, 148050.	8.0	49
17	Contributions of combined sewer overflows and treated effluents to the bacterial load released into a coastal area. Science of the Total Environment, 2017, 607-608, 483-496.	8.0	45
18	A project of reuse of reclaimed wastewater in the Po Valley, Italy: Polishing sequence and cost benefit analysis. Journal of Hydrology, 2012, 432-433, 127-136.	5.4	38

#	Article	IF	Citations
19	Surface Water and Groundwater Quality in South Africa and Mozambique—Analysis of the Most Critical Pollutants for Drinking Purposes and Challenges in Water Treatment Selection. Water (Switzerland), 2020, 12, 305.	2.7	37
20	Electrochemical disinfection of groundwater for civil use $\hat{a} \in \text{``An example of an effective endogenous advanced oxidation process. Chemosphere, 2018, 207, 101-109.}$	8.2	31
21	A review of selected microcontaminants and microorganisms in land runoff and tile drainage in treated sludge-amended soils. Science of the Total Environment, 2019, 655, 939-957.	8.0	28
22	Hospital Wastewater Treatments Adopted in Asia, Africa, and Australia. Handbook of Environmental Chemistry, 2017, , 171-188.	0.4	25
23	Wastewater polishing index: a tool for a rapid quality assessment of reclaimed wastewater. Environmental Monitoring and Assessment, 2011, 173, 267-277.	2.7	23
24	A promising practice to reclaim treated wastewater for reuse: Chemical disinfection followed by natural systems. Desalination, 2009, 247, 490-508.	8.2	19
25	Removal of Pharmaceuticals by Conventional Wastewater Treatment Plants. Comprehensive Analytical Chemistry, 2013, 62, 231-286.	1.3	18
26	A numerical procedure for assessing risks from road transport of dangerous substances. Journal of Loss Prevention in the Process Industries, 1995, 8, 245-252.	3.3	17
27	Improvement in the removal of micropollutants at Porto Marghera industrial wastewaters treatment plant by MBR technology. Water Science and Technology, 2008, 58, 1789-1796.	2.5	15
28	Trends, new insights and perspectives in the treatment of hospital effluents. Current Opinion in Environmental Science and Health, 2021, 19, 100217.	4.1	15
29	Occurrence of Common Pollutants and Pharmaceuticals in Hospital Effluents. Handbook of Environmental Chemistry, 2017, , 17-32.	0.4	11
30	Occurrence of Micropollutants in Wastewater and Evaluation of Their Removal Efficiency in Treatment Trains: The Influence of the Adopted Sampling Mode. Water (Switzerland), 2019, 11, 1152.	2.7	10
31	Willingness to Pay for Recreational Benefit Evaluation in a Wastewater Reuse Project. Analysis of a Case Study. Water (Switzerland), 2018, 10, 922.	2.7	8
32	Zootechnical Farm Wastewaters in Ecuador: A Treatment Proposal and Cost-benefit Analysis. Water (Switzerland), 2019, 11, 779.	2.7	7
33	Pharmaceutical Residues in Sewage Treatment Works and their Fate in the Receiving Environment. Issues in Environmental Science and Technology, 2015, , 120-179.	0.4	7
34	Efficacy and Reliability of Upgraded Industrial Treatment Plant at Porto Marghera, near Venice, Italy, in Removing Nutrients and Dangerous Micropollutants from Petrochemical Wastewaters. Water Environment Research, 2011, 83, 739-749.	2.7	6
35	Micro-pollutants in Hospital Effluent: Their Fate, Risk and Treatment Options. Handbook of Environmental Chemistry, 2012, , 139-171.	0.4	6
36	Most relevant sources and emission pathways of pollution for selected pharmaceuticals in a catchment area based on substance flow analysis. Science of the Total Environment, 2021, 751, 142328.	8.0	6

#	Article	IF	Citations
37	Hospital Wastewaters: Quali-Quantitative Characterization and for Strategies for Their Treatment and Disposal., 2013,, 225-251.		5
38	SWOT-SOR Analysis of Activated Carbon-Based Technologies and O3/UV Process as Polishing Treatments for Hospital Effluent. Water (Switzerland), 2022, 14, 243.	2.7	4
39	Removal of Personal Care Products in Constructed Wetlands. Handbook of Environmental Chemistry, 2014, , 319-353.	0.4	3
40	Removal of micropollutants using a membrane bioreactor coupled with powdered activated carbon â€" A statistical analysis approach. Science of the Total Environment, 2022, 840, 156557.	8.0	3
41	Editorial: Full-scale investigations in water and wastewater treatment. Water Science and Technology, 2015, 71, 463-467.	2.5	2
42	Final Remarks and Perspectives on the Management and Treatment of Hospital Effluents. Handbook of Environmental Chemistry, 2017, , 231-238.	0.4	2
43	New Insights into the Occurrence of Micropollutants and the Management and Treatment of Hospital Effluent. Handbook of Environmental Chemistry, 2020, , 53-96.	0.4	2
44	Surface and Groundwater Quality in South African Area—Analysis of the Most Critical Pollutants for Drinking Purposes. Proceedings (mdpi), 2020, 48, 3.	0.2	2
45	Occurrence of Cytostatics in Different Water Compartments. , 2020, , 221-244.		1
46	Feasibility evaluation in reclaimed water reuse projects through the analysis of some case studies. Advances in Chemical Pollution, Environmental Management and Protection, 2020, , 221-252.	0.5	1
47	Pharmaceutical Concentrations and Loads in Hospital Effluents: Is a Predictive Model or Direct Measurement the Most Accurate Approach?. Handbook of Environmental Chemistry, 2016, , 101-133.	0.4	O
48	Silvio Vaz Jr.: Analytical chemistry applied to emerging pollutants. Analytical and Bioanalytical Chemistry, 2019, 411, 289-290.	3.7	0
49	A New Alternative for Flocculation with Moringa Oleifera in Ecuador. Proceedings (mdpi), 2020, 48, 24.	0.2	0
50	Contribution of Land Runoff to the Release of Pesticides into Water Bodies in Arable Areas. Handbook of Environmental Chemistry, 2021, , 225-249.	0.4	0