Aviad Tsherniak

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4213951/aviad-tsherniak-publications-by-year.pdf

Version: 2024-04-03

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

74	8,686	39	82
papers	citations	h-index	g-index
82 ext. papers	12,789 ext. citations	22.5 avg, IF	5.22 L-index

#	Paper	IF	Citations
74	Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects <i>Genome Biology</i> , 2021 , 22, 343	18.3	8
73	Integrated cross-study datasets of genetic dependencies in cancer. <i>Nature Communications</i> , 2021 , 12, 1661	17.4	17
7 ²	A first-generation pediatric cancer dependency map. <i>Nature Genetics</i> , 2021 , 53, 529-538	36.3	21
71	Genome-scale screens identify factors regulating tumor cell responses to natural killer cells. <i>Nature Genetics</i> , 2021 , 53, 1196-1206	36.3	9
70	Functional Genomics Identify Distinct and Overlapping Genes Mediating Resistance to Different Classes of Heterobifunctional Degraders of Oncoproteins. <i>Cell Reports</i> , 2021 , 34, 108532	10.6	15
69	An Embryonic Diapause-like Adaptation with Suppressed Myc Activity Enables Tumor Treatment Persistence. <i>Cancer Cell</i> , 2021 , 39, 240-256.e11	24.3	29
68	Global computational alignment of tumor and cell line transcriptional profiles. <i>Nature Communications</i> , 2021 , 12, 22	17.4	19
67	Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling. <i>Nature Cancer</i> , 2020 , 1, 235-248	15.4	137
66	Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. <i>Nature Genetics</i> , 2020 , 52, 1208-1218	36.3	63
65	Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action. <i>Nature Communications</i> , 2020 , 11, 4296	17.4	37
64	Synthetic Lethal Interaction between the ESCRT Paralog Enzymes VPS4A and VPS4B in Cancers Harboring Loss of Chromosome 18q or 16q. <i>Cell Reports</i> , 2020 , 33, 108493	10.6	7
63	Small-Molecule and CRISPR Screening Converge to Reveal Receptor Tyrosine Kinase Dependencies in Pediatric Rhabdoid Tumors. <i>Cell Reports</i> , 2019 , 28, 2331-2344.e8	10.6	20
62	Mitochondrial metabolism promotes adaptation to proteotoxic stress. <i>Nature Chemical Biology</i> , 2019 , 15, 681-689	11.7	62
61	Neuronal differentiation and cell-cycle programs mediate response to BET-bromodomain inhibition in MYC-driven medulloblastoma. <i>Nature Communications</i> , 2019 , 10, 2400	17.4	18
60	Next-generation characterization of the Cancer Cell Line Encyclopedia. <i>Nature</i> , 2019 , 569, 503-508	50.4	962
59	The landscape of cancer cell line metabolism. <i>Nature Medicine</i> , 2019 , 25, 850-860	50.5	188
58	Genome-Wide Interrogation of Human Cancers Identifies EGLN1 Dependency in Clear Cell Ovarian Cancers. <i>Cancer Research</i> , 2019 , 79, 2564-2579	10.1	18

57	WRN helicase is a synthetic lethal target in microsatellite unstable cancers. <i>Nature</i> , 2019 , 568, 551-556	50.4	137
56	MDM2 and MDM4 Are Therapeutic Vulnerabilities in Malignant Rhabdoid Tumors. <i>Cancer Research</i> , 2019 , 79, 2404-2414	10.1	24
55	Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets. <i>Nature Communications</i> , 2019 , 10, 5817	17.4	70
54	Somatic Superenhancer Duplications and Hotspot Mutations Lead to Oncogenic Activation of the KLF5 Transcription Factor. <i>Cancer Discovery</i> , 2018 , 8, 108-125	24.4	67
53	Genome-scale CRISPR-Cas9 screen identifies druggable dependencies in wild-type Ewing sarcoma. Journal of Experimental Medicine, 2018 , 215, 2137-2155	16.6	43
52	Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry. <i>Nature Genetics</i> , 2018 , 50, 1240-1246	36.3	94
51	Genetic and transcriptional evolution alters cancer cell line drug response. <i>Nature</i> , 2018 , 560, 325-330	50.4	379
50	GeNets: a unified web platform for network-based genomic analyses. <i>Nature Methods</i> , 2018 , 15, 543-54	6 21.6	36
49	CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. <i>Journal of Clinical Investigation</i> , 2018 , 128, 446-462	15.9	72
48	Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration. <i>Nature Communications</i> , 2018 , 9, 4610	17.4	155
47	Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. <i>Nature Communications</i> , 2018 , 9, 5450	17.4	83
46	Mutational processes shape the landscape of TP53 mutations in human cancer. <i>Nature Genetics</i> , 2018 , 50, 1381-1387	36.3	165
45	Interrogation of Mammalian Protein Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens. <i>Cell Systems</i> , 2018 , 6, 555-568.e7	10.6	65
44	Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. <i>Nature Communications</i> , 2018 , 9, 2024	17.4	54
43	Genome-scale analysis identifies paralog lethality as a vulnerability of chromosome 1p loss in cancer. <i>Nature Genetics</i> , 2018 , 50, 937-943	36.3	35
42	mutant tumors depend on oxoglutarate dehydrogenase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E3434-E3443	11.5	24
41	Complementary information derived from CRISPR Cas9 mediated gene deletion and suppression. <i>Nature Communications</i> , 2017 , 8, 15403	17.4	65
40	Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. <i>Nature Genetics</i> , 2017 , 49, 1779-1784	36.3	740

39	Multiplex CRISPR/Cas9-Based Genome Editing in Human Hematopoietic Stem Cells Models Clonal Hematopoiesis and Myeloid Neoplasia. <i>Cell Stem Cell</i> , 2017 , 21, 547-555.e8	18	43
38	A Community Challenge for Inferring Genetic Predictors of Gene Essentialities through Analysis of a Functional Screen of Cancer Cell Lines. <i>Cell Systems</i> , 2017 , 5, 485-497.e3	10.6	14
37	Decomposing Oncogenic Transcriptional Signatures to Generate Maps of Divergent Cellular States. <i>Cell Systems</i> , 2017 , 5, 105-118.e9	10.6	27
36	Defining a Cancer Dependency Map. <i>Cell</i> , 2017 , 170, 564-576.e16	56.2	844
35	PRMT1-Mediated Translation Regulation Is a Crucial Vulnerability of Cancer. <i>Cancer Research</i> , 2017 , 77, 4613-4625	10.1	21
34	Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability. <i>ELife</i> , 2017 , 6,	8.9	49
33	Functional Genomic Characterization of Cancer Genomes. <i>Cold Spring Harbor Symposia on Quantitative Biology</i> , 2016 , 81, 237-246	3.9	11
32	Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting. Cancer Discovery, 2016 , 6, 914-29	24.4	343
31	Identification of cancer-cytotoxic modulators of PDE3A by predictive chemogenomics. <i>Nature Chemical Biology</i> , 2016 , 12, 102-8	11.7	51
30	MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. <i>Science</i> , 2016 , 351, 1214-8	33.3	248
29	High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. <i>Nature Biotechnology</i> , 2016 , 34, 419-23	44.5	127
28	Identification of an "Exceptional Responder" Cell Line to MEK1 Inhibition: Clinical Implications for MEK-Targeted Therapy. <i>Molecular Cancer Research</i> , 2016 , 14, 207-15	6.6	16
27	Integrated genetic and pharmacologic interrogation of rare cancers. <i>Nature Communications</i> , 2016 , 7, 11987	17.4	32
26	Characterizing genomic alterations in cancer by complementary functional associations. <i>Nature Biotechnology</i> , 2016 , 34, 539-46	44.5	57
25	SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. <i>Nature Medicine</i> , 2015 , 21, 1491-6	50.5	252
24	Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma. <i>Oncotarget</i> , 2015 , 6, 30178-93	3.3	51
23	Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. <i>Scientific Data</i> , 2014 , 1, 140035	8.2	251
22	SQSTM1 is a pathogenic target of 5q copy number gains in kidney cancer. <i>Cancer Cell</i> , 2013 , 24, 738-50	24.3	111

21	ECatenin-Driven Cancers Require a YAP1 Transcriptional Complex for Survival and Tumorigenesis. <i>Cell</i> , 2013 , 153, 267-270	56.2	6	
20	ATARiS: computational quantification of gene suppression phenotypes from multisample RNAi screens. <i>Genome Research</i> , 2013 , 23, 665-78	9.7	93	
19	Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. <i>Journal of Clinical Investigation</i> , 2013 , 123, 517-25	15.9	371	
18	ECatenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. <i>Cell</i> , 2012 , 151, 1457-73	56.2	522	
17	Cancer vulnerabilities unveiled by genomic loss. <i>Cell</i> , 2012 , 150, 842-54	56.2	163	
16	Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. <i>Journal of Clinical Oncology</i> , 2011 , 29, 1424-30	2.2	513	
15	Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 12372-7	11.5	321	
14	Predicting relapse in patients with medulloblastoma by integrating evidence from clinical and genomic features. <i>Journal of Clinical Oncology</i> , 2011 , 29, 1415-23	2.2	58	
13	Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration		2	
12	Multiplexed single-cell profiling of post-perturbation transcriptional responses to define cancer vulnerabilities and therapeutic mechanism of action		3	
11	Computational correction of copy-number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells		1	
10	Gene expression has more power for predicting in vitro cancer cell vulnerabilities than genomics		12	
9	Post-perturbational transcriptional signatures of cancer cell line vulnerabilities		1	
8	Global computational alignment of tumor and cell line transcriptional profiles		2	
7	Integrated cross-study datasets of genetic dependencies in cancer		3	
6	Open Community Challenge Reveals Molecular Network Modules with Key Roles in Diseases		10	
5	Agreement between two large pan-cancer CRISPR-Cas9 gene dependency datasets		2	
4	Extracting Biological Insights from the Project Achilles Genome-Scale CRISPR Screens in Cancer Cell Lir	nes	88	

3	Non-oncology drugs are a source of previously unappreciated anti-cancer activity	6
2	Pan-cancer single cell RNA-seq uncovers recurring programs of cellular heterogeneity	9
1	Chronos: a CRISPR cell population dynamics model	2