
Jacqueline M Stephens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4213833/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cross-Omics Analysis of Fenugreek Supplementation Reveals Beneficial Effects Are Caused by Gut Microbiome Changes Not Mammalian Host Physiology. International Journal of Molecular Sciences, 2022, 23, 3654.	1.8	2
2	Loss of Adipocyte STAT5 Confers Increased Depot-Specific Adiposity in Male and Female Mice That Is Not Associated With Altered Adipose Tissue Lipolysis. Frontiers in Endocrinology, 2022, 13, 812802.	1.5	5
3	Prenylated Coumaric Acids from <i>Artemisia scoparia</i> Beneficially Modulate Adipogenesis. Journal of Natural Products, 2021, 84, 1078-1086.	1.5	3
4	KAT8, lysine acetyltransferase 8, is required for adipocyte differentiation in vitro. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166103.	1.8	3
5	Artemisia scoparia promotes adipogenesis in the absence of adipogenic effectors. Obesity, 2021, 29, 1309-1319.	1.5	4
6	Artemisia scoparia and Metabolic Health: Untapped Potential of an Ancient Remedy for Modern Use. Frontiers in Endocrinology, 2021, 12, 727061.	1.5	8
7	A Role for Oncostatin M in the Impairment of Glucose Homeostasis in Obesity. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e337-e348.	1.8	15
8	Bromodomain and Extraterminal Inhibition by JQ1 Produces Divergent Transcriptional Regulation of Suppressors of Cytokine Signaling Genes in Adipocytes. Endocrinology, 2020, 161, .	1.4	2
9	Complement in Reproductive White Adipose Tissue Characterizes the Obese Preeclamptic-Like BPH/5 Mouse Prior to and During Pregnancy. Biology, 2020, 9, 304.	1.3	7
10	Mechanisms of <i>Artemisia scoparia</i> 's Antiâ€Inflammatory Activity in Cultured Adipocytes, Macrophages, and Pancreatic βâ€Cells. Obesity, 2020, 28, 1726-1735.	1.5	8
11	Mitochondrial Pyruvate Carriers are not Required for Adipogenesis but areÂRegulated by Highâ€Fat Feeding in Brown Adipose Tissue. Obesity, 2020, 28, 293-302.	1.5	6
12	Fenugreek Counters the Effects of High Fat Diet on Gut Microbiota in Mice: Links to Metabolic Benefit. Scientific Reports, 2020, 10, 1245.	1.6	23
13	Adipocyte Oncostatin Receptor Regulates Adipose Tissue Homeostasis and Inflammation. Frontiers in Immunology, 2020, 11, 612013.	2.2	6
14	Latest advances in STAT signaling and function in adipocytes. Clinical Science, 2020, 134, 629-639.	1.8	17
15	Adipose tissue in health and disease. Open Biology, 2020, 10, 200291.	1.5	38
16	The Expression of Adipose Tissue-Derived Cardiotrophin-1 in Humans with Obesity. Biology, 2019, 8, 24.	1.3	8
17	Distinct Fractions of an Artemisia scoparia Extract Contain Compounds With Novel Adipogenic Bioactivity. Frontiers in Nutrition, 2019, 6, 18.	1.6	16
18	Naringenin Promotes Thermogenic Gene Expression in Human White Adipose Tissue. Obesity, 2019, 27, 103-111.	1.5	46

JACQUELINE M STEPHENS

#	Article	IF	CITATIONS
19	Adipose Tissue Dysfunction Occurs Independently of Obesity in Adipocyteâ€5pecific Oncostatin Receptor Knockout Mice. Obesity, 2018, 26, 1439-1447.	1.5	10
20	An ethanolic extract of <i>Artemisia scoparia</i> inhibits lipolysis in vivo and has antilipolytic effects on murine adipocytes in vitro. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E1053-E1061.	1.8	14
21	Fibroblast growth factor 21, adiposity, and macronutrient balance in a healthy, pregnant population with overweight and obesity. Endocrine Research, 2018, 43, 275-283.	0.6	8
22	Groundsel Bush (Baccharis halimifolia) Extract Promotes Adipocyte Differentiation In Vitro and Increases Adiponectin Expression in Mature Adipocytes. Biology, 2018, 7, 22.	1.3	2
23	l-Citrulline Supplementation: Impact on Cardiometabolic Health. Nutrients, 2018, 10, 921.	1.7	130
24	Loss of DBC1 (CCAR2) affects TNFα-induced lipolysis and Glut4 gene expression in murine adipocytes. Journal of Molecular Endocrinology, 2018, 61, 195-205.	1.1	5
25	Transcriptional Regulation of Adipogenesis. , 2017, 7, 635-674.		292
26	Fenugreek supplementation during high-fat feeding improves specific markers of metabolic health. Scientific Reports, 2017, 7, 12770.	1.6	27
27	Pyruvate dehydrogenase complex (PDC) subunits moonlight as interaction partners of phosphorylated STAT5 in adipocytes and adipose tissue. Journal of Biological Chemistry, 2017, 292, 19733-19742.	1.6	22
28	Operation Damage Control: Exercise Training to Prevent Metabolic Damage from Highâ€Fat Feeding. Obesity, 2017, 25, 1652-1652.	1.5	0
29	2â€deoxyglucose inhibits induction of chemokine expression in 3 <scp>T</scp> 3â€ <scp>L</scp> 1 adipocytes and adipose tissue explants. Obesity, 2017, 25, 76-84.	1.5	3
30	STAT5-Interacting Proteins: A Synopsis of Proteins that Regulate STAT5 Activity. Biology, 2017, 6, 20.	1.3	30
31	<scp>IGF1</scp> and adipose tissue homeostasis. Obesity, 2016, 24, 10-10.	1.5	3
32	Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo. Journal of Biological Chemistry, 2016, 291, 17066-17076.	1.6	31
33	The modulation of adiponectin by STAT5-activating hormones. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E129-E136.	1.8	14
34	Stinging Nettle (Urtica dioica L.) Attenuates FFA Induced Ceramide Accumulation in 3T3-L1 Adipocytes in an Adiponectin Dependent Manner. PLoS ONE, 2016, 11, e0150252.	1.1	10
35	Oncostatin M Modulation of Lipid Storage. Biology, 2015, 4, 151-160.	1.3	12
36	Thiobenzothiazole-modified Hydrocortisones Display Anti-inflammatory Activity with Reduced Impact on Islet β-Cell Function. Journal of Biological Chemistry, 2015, 290, 13401-13416.	1.6	9

#	Article	IF	CITATIONS
37	Impaired mitochondrial fat oxidation induces adaptive remodeling of muscle metabolism. Proceedings of the United States of America, 2015, 112, E3300-9.	3.3	96
38	Blueberries improve glucose tolerance without altering body composition in obese postmenopausal mice. Obesity, 2015, 23, 573-580.	1.5	34
39	Isothiocyanateâ€rich <i>Moringa oleifera</i> extract reduces weight gain, insulin resistance, and hepatic gluconeogenesis in mice. Molecular Nutrition and Food Research, 2015, 59, 1013-1024.	1.5	124
40	CCL20 is elevated during obesity and differentially regulated by NF-κB subunits in pancreatic β-cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 637-652.	0.9	37
41	Diosgenin, 4-Hydroxyisoleucine, and Fiber from Fenugreek: Mechanisms of Actions and Potential Effects on Metabolic Syndrome. Advances in Nutrition, 2015, 6, 189-197.	2.9	95
42	Fat in flames: influence of cytokines and pattern recognition receptors on adipocyte lipolysis. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E205-E213.	1.8	78
43	Artemisia scoparia Enhances Adipocyte Development and Endocrine Function In Vitro and Enhances Insulin Action In Vivo. PLoS ONE, 2014, 9, e98897.	1.1	26
44	St. John's Wort Has Metabolically Favorable Effects on Adipocytes <i>In Vivo</i> . Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-8.	0.5	5
45	The Induction of Lipocalin-2 Protein Expression in Vivo and in Vitro. Journal of Biological Chemistry, 2014, 289, 5960-5969.	1.6	77
46	The role of JAK–STAT signaling in adipose tissue function. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 431-439.	1.8	139
47	Oncostatin M Is Produced in Adipose Tissue and Is Regulated in Conditions of Obesity and Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E217-E225.	1.8	56
48	Botanicals and translational medicine: A paradigm shift in research approach. Nutrition, 2014, 30, S1-S3.	1.1	1
49	Artemisia extracts activate PPARγ, promote adipogenesis, and enhance insulin sensitivity in adipose tissue of obese mice. Nutrition, 2014, 30, S31-S36.	1.1	29
50	Identification of STAT target genes in adipocytes. Jak-stat, 2013, 2, e23092.	2.2	22
51	Naringenin Inhibits Adipogenesis and Reduces Insulin Sensitivity and Adiponectin Expression in Adipocytes. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-10.	0.5	45
52	Botanical extracts modulate adipocyte function and insulin sensitivity in vitro and in vivo. FASEB Journal, 2013, 27, 637.38.	0.2	0
53	The Fat Controller: Adipocyte Development. PLoS Biology, 2012, 10, e1001436.	2.6	96
54	Adipogenesis. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008417-a008417.	2.3	235

#	Article	IF	CITATIONS
55	St. John's Wort inhibits insulin signaling in murine and human adipocytes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 557-563.	1.8	18
56	Controlling a master switch of adipocyte development and insulin sensitivity: Covalent modifications of PPARÎ ³ . Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1090-1095.	1.8	76
57	Tools for the identification of bioactives impacting the metabolic syndrome: screening of a botanical extract library using subcutaneous and visceral human adipose-derived stem cell-based assays. Journal of Nutritional Biochemistry, 2012, 23, 519-525.	1.9	6
58	Emerging roles of JAK–STAT signaling pathways in adipocytes. Trends in Endocrinology and Metabolism, 2011, 22, 325-332.	3.1	89
59	The gp130 Receptor Cytokine Family: Regulators of Adipocyte Development and Function. Current Pharmaceutical Design, 2011, 17, 340-346.	0.9	67
60	The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nature Medicine, 2011, 17, 179-188.	15.2	2,120
61	Gp130 Cytokines Exert Differential Patterns of Crosstalk in Adipocytes Both <i>In Vitro</i> and <i>In Vivo</i> . Obesity, 2011, 19, 903-910.	1.5	16
62	STAT5A Expression in Swiss 3T3 Cells Promotes Adipogenesis <i>In Vivo</i> in an Athymic Mice Model System. Obesity, 2011, 19, 1731-1734.	1.5	33
63	Transcriptional factors that promote formation of white adipose tissue. Molecular and Cellular Endocrinology, 2010, 318, 10-14.	1.6	303
64	Preface to special issue on molecular and cellular aspects of adipocyte development and function. Molecular and Cellular Endocrinology, 2010, 318, 1.	1.6	2
65	Neuropoietin activates STAT3 independent of LIFR activation in adipocytes. Biochemical and Biophysical Research Communications, 2010, 395, 48-50.	1.0	19
66	Obesity Increases the Production of Proinflammatory Mediators from Adipose Tissue T Cells and Compromises TCR Repertoire Diversity: Implications for Systemic Inflammation and Insulin Resistance. Journal of Immunology, 2010, 185, 1836-1845.	0.4	381
67	St. John's Wort inhibits adipocyte differentiation and induces insulin resistance in adipocytes. Biochemical and Biophysical Research Communications, 2009, 388, 146-149.	1.0	14
68	Caspaseâ€mediated Degradation of PPARγ Proteins in Adipocytes. Obesity, 2008, 16, 1735-1741.	1.5	43
69	Neuropoietin Attenuates Adipogenesis and Induces Insulin Resistance in Adipocytes. Journal of Biological Chemistry, 2008, 283, 22505-22512.	1.6	26
70	The STAT5A-Mediated Induction of Pyruvate Dehydrogenase Kinase 4 Expression by Prolactin or Growth Hormone in Adipocytes. Diabetes, 2007, 56, 1623-1629.	0.3	48
71	Degradation of STAT5 proteins in 3T3-L1 adipocytes is induced by TNF-α and cycloheximide in a manner independent of STAT5A activation. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E461-E468.	1.8	7
72	The Modulation of STAT5A/GR Complexes during Fat Cell Differentiation and in Mature Adipocytes. Obesity, 2007, 15, 583-590.	1.5	24

#	Article	IF	CITATIONS
73	Induction of SOCS-3 is insufficient to confer IRS-1 protein degradation in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications, 2006, 344, 95-98.	1.0	12
74	STAT5 activators modulate acyl CoA oxidase (AOX) expression in adipocytes and STAT5A binds to the AOX promoter in vitro. Biochemical and Biophysical Research Communications, 2006, 344, 1342-1345.	1.0	22
75	Modulation and Lack of Crossâ€Talk between Signal Transducer and Activator of Transcription 5 and Suppressor of Cytokine Signalingâ€3 in Insulin and Growth Hormone Signaling in 3T3‣1 Adipocytes. Obesity, 2006, 14, 1303-1311.	1.5	12
76	The Regulation of Fatty Acid Synthase by STAT5A. Diabetes, 2005, 54, 1968-1975.	0.3	76
77	Effects of leukemia inhibitory factor on 3T3-L1 adipocytes. Journal of Endocrinology, 2005, 185, 485-496.	1.2	46
78	Cross-talk among gp130 Cytokines in Adipocytes. Journal of Biological Chemistry, 2005, 280, 33856-33863.	1.6	36
79	Effects of Cardiotrophin on Adipocytes. Journal of Biological Chemistry, 2004, 279, 47572-47579.	1.6	55
80	Control of Peroxisome Proliferatorâ€Activated Receptor γ2 Stability and Activity by SUMOylation. Obesity, 2004, 12, 921-928.	4.0	63
81	STAT 5 activators can replace the requirement of FBS in the adipogenesis of 3T3-L1 cells. Biochemical and Biophysical Research Communications, 2004, 324, 355-359.	1.0	55
82	Stabilization, not polymerization, of microtubules inhibits the nuclear translocation of STATs in adipocytes. Biochemical and Biophysical Research Communications, 2004, 325, 716-718.	1.0	13
83	Regulation of PPARγ and Obesity by Agouti/Melanocortin Signaling in Adipocytes. Annals of the New York Academy of Sciences, 2003, 994, 141-146.	1.8	15
84	Growth hormone, but not insulin, activates STAT5 proteins in adipocytes in vitro and in vivo. Biochemical and Biophysical Research Communications, 2003, 302, 359-362.	1.0	15
85	STAT 1 binds to the LPL promoter in vitro. Biochemical and Biophysical Research Communications, 2003, 307, 350-354.	1.0	12
86	STAT5A Promotes Adipogenesis in Nonprecursor Cells and Associates With the Glucocorticoid Receptor During Adipocyte Differentiation. Diabetes, 2003, 52, 308-314.	0.3	112
87	The Regulation and Activation of Ciliary Neurotrophic Factor Signaling Proteins in Adipocytes. Journal of Biological Chemistry, 2003, 278, 2228-2235.	1.6	61
88	Agouti Expression in Human Adipose Tissue: Functional Consequences and Increased Expression in Type 2 Diabetes. Diabetes, 2003, 52, 2914-2922.	0.3	74
89	Targeting Acetyl-CoA Carboxylase for Anti-obesity Therapy. Current Medicinal Chemistry Immunology, Endocrine & Metabolic Agents, 2003, 3, 229-234.	0.2	3
90	Interferon-γ-mediated Activation and Ubiquitin-Proteasome-dependent Degradation of PPARγ in Adipocytes. Journal of Biological Chemistry, 2002, 277, 4062-4068.	1.6	165

#	Article	IF	CITATIONS
91	Troponin-Tropomyosin: An Allosteric Switch or a Steric Blocker?. Biophysical Journal, 2002, 83, 1039-1049.	0.2	36
92	The Identification and Characterization of a STAT 1 Binding Site in the PPARγ2 Promoter. Biochemical and Biophysical Research Communications, 2001, 287, 484-492.	1.0	31
93	Agouti regulates adipocyte transcription factors. American Journal of Physiology - Cell Physiology, 2001, 280, C954-C961.	2.1	47
94	Interferon-Î ³ -induced Regulation of Peroxisome Proliferator-activated Receptor Î ³ and STATs in Adipocytes. Journal of Biological Chemistry, 2001, 276, 7062-7068.	1.6	135
95	Regulation of signal transducers and activators of transcription (STATs) by effectors of adipogenesis: coordinate regulation of STATs 1, 5A, and 5B with peroxisome proliferator-activated receptor-1 ³ and C/AAAT enhancer binding protein-1±. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1452, 188-196.	1.9	52
96	PPARÎ ³ Ligand-Dependent Induction of STAT1, STAT5A, and STAT5B during Adipogenesis. Biochemical and Biophysical Research Communications, 1999, 262, 216-222.	1.0	72
97	Highly Specific and Quantitative Activation of STATs in 3T3-L1 Adipocytes. Biochemical and Biophysical Research Communications, 1998, 247, 894-900.	1.0	52
98	Activation of Signal Transducers and Activators of Transcription 1 and 3 by Leukemia Inhibitory Factor, Oncostatin-M, and Interferon-l ³ in Adipocytes. Journal of Biological Chemistry, 1998, 273, 31408-31416.	1.6	83
99	Tumor Necrosis Factor-α-induced Insulin Resistance in 3T3-L1 Adipocytes Is Accompanied by a Loss of Insulin Receptor Substrate-1 and GLUT4 Expression without a Loss of Insulin Receptor-mediated Signal Transduction. Journal of Biological Chemistry, 1997, 272, 971-976.	1.6	456
100	The Expression and Regulation of STATs during 3T3-L1 Adipocyte Differentiation. Journal of Biological Chemistry, 1996, 271, 10441-10444.	1.6	125