
Marica Ivanković

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4213780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Osteogenic differentiation of human mesenchymal stem cells on substituted calcium phosphate/chitosan composite scaffold. Carbohydrate Polymers, 2022, 277, 118883.	5.1	26
2	PCL/Si-Doped Multi-Phase Calcium Phosphate Scaffolds Derived from Cuttlefish Bone. Materials, 2022, 15, 3348.	1.3	5
3	Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells. Journal of Materials Science, 2021, 56, 3947-3969.	1.7	20
4	Metal ion-assisted formation of porous chitosan-based microspheres for biomedical applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 1027-1035.	1.8	5
5	Selenite Substituted Calcium Phosphates: Preparation, Characterization, and Cytotoxic Activity. Materials, 2021, 14, 3436.	1.3	11
6	PCL-Coated Multi-Substituted Calcium Phosphate Bone Scaffolds with Enhanced Properties. Materials, 2021, 14, 4403.	1.3	4
7	Electrosprayed Chitosan–Copper Complex Microspheres with Uniform Size. Materials, 2021, 14, 5630.	1.3	9
8	Characterization of Chitosan-Based Scaffolds Seeded with Sheep Nasal Chondrocytes for Cartilage Tissue Engineering. Annals of Biomedical Engineering, 2021, 49, 1572-1586.	1.3	10
9	Strontium substituted biomimetic calcium phosphate system derived from cuttlefish bone. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1697-1709.	1.6	17
10	From Bio-waste to Bone Substitute. Chemical and Biochemical Engineering Quarterly, 2020, 34, 59-71.	0.5	20
11	The bioactivity of titanium-cuttlefish bone-derived hydroxyapatite composites sintered at low temperature. Powder Metallurgy, 2020, 63, 300-310.	0.9	7
12	Tuning physicochemical and biological properties of chitosan through complexation with transition metal ions. International Journal of Biological Macromolecules, 2019, 129, 645-652.	3.6	20
13	Preparation of 3D Porous Scaffolds for Bone Tissue Engineering. Kemija U Industriji, 2019, 68, 457-468.	0.2	0
14	Bone-Mimicking Injectable Gelatine/Hydroxyapatite Hydrogels. Chemical and Biochemical Engineering Quarterly, 2019, 33, 325-335.	0.5	5
15	Injectable chitosan-hydroxyapatite hydrogels promote the osteogenic differentiation of mesenchymal stem cells. Carbohydrate Polymers, 2018, 197, 469-477.	5.1	59
16	Highly porous hydroxyapatite derived from cuttlefish bone as tio2 catalyst support. Processing and Application of Ceramics, 2018, 12, 136-142.	0.4	14
17	Cellular hydrogels based on pH-responsive chitosan-hydroxyapatite system. Carbohydrate Polymers, 2017, 166, 173-182.	5.1	71
18	Human Mesenchymal Stem Cells Differentiation Regulated by Hydroxyapatite Content within Chitosan-Based Scaffolds under Perfusion Conditions. Polymers, 2017, 9, 387.	2.0	21

Marica Ivanković

#	Article	IF	CITATIONS
19	Lysozyme-Induced Degradation of Chitosan: The Characterisation of Degraded Chitosan Scaffolds. Journal of Tissue Repair and Regeneration, 2017, 1, 12-22.	2.0	55
20	Macroporous poly(lactic acid) construct supporting the osteoinductive porous chitosan-based hydrogel for bone tissue engineering. Polymer, 2016, 98, 172-181.	1.8	48
21	In Situ Hydroxyapatite Content Affects the Cell Differentiation on Porous Chitosan/Hydroxyapatite Scaffolds. Annals of Biomedical Engineering, 2016, 44, 1107-1119.	1.3	19
22	Effect of in situ formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite scaffolds. European Polymer Journal, 2015, 68, 278-287.	2.6	34
23	PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: Morphology, mechanical properties and bioactivity. Materials Science and Engineering C, 2014, 34, 437-445.	3.8	103
24	PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: In vitro cell culture studies. Materials Science and Engineering C, 2014, 42, 264-272.	3.8	63
25	Preparation and characterization of nano-hydroxyapatite within chitosan matrix. Materials Science and Engineering C, 2013, 33, 4539-4544.	3.8	49
26	Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts. Applied Clay Science, 2013, 85, 109-115.	2.6	111
27	Modeling the effect of the curing conversion on the dynamic viscosity of epoxy resins cured by an anhydride curing agent. Journal of Applied Polymer Science, 2010, 115, 1671-1674.	1.3	18
28	Preparation of highly porous hydroxyapatite from cuttlefish bone. Journal of Materials Science: Materials in Medicine, 2009, 20, 1039-1046.	1.7	71
29	Preparation and properties of organic–inorganic hybrids based on poly(methyl methacrylate) and sol–gel polymerized 3-glycidyloxypropyltrimethoxysilane. Polymer, 2009, 50, 2544-2550.	1.8	33
30	Modification of montmorillonite by cationic polyesters. Applied Clay Science, 2009, 43, 420-424.	2.6	16
31	Thermal degradation kinetics of epoxy/organically modified montmorillonite nanocomposites. Journal of Applied Polymer Science, 2008, 107, 1932-1938.	1.3	23
32	Montmorillonite modified with liquid crystalline diol hydrochlorides: Preparation and characterization. Journal of Non-Crystalline Solids, 2008, 354, 1986-1991.	1.5	14
33	Modification of montmorillonite by quaternary polyesters. Journal of Non-Crystalline Solids, 2008, 354, 3326-3331.	1.5	23
34	Effect of Temperature and Mechanical Stress on Barrier Properties of Polymeric Films Used for Food Packaging. Journal of Plastic Film and Sheeting, 2007, 23, 239-256.	1.3	27
35	Thermal degradation of epoxy–silica organic–inorganic hybrid materials. Polymer Degradation and Stability, 2006, 91, 122-127.	2.7	92
36	DSC study of the cure kinetics during nanocomposite formation: Epoxy/poly(oxypropylene) diamine/organically modified montmorillonite system. Journal of Applied Polymer Science, 2006, 99, 550-557.	1.3	44

Marica Ivanković

#	Article	IF	CITATIONS
37	Gas transport and thermal characterization of mono- and di-polyethylene films used for food packaging. Journal of Applied Polymer Science, 2006, 99, 1590-1599.	1.3	45
38	Isothermal and nonisothermal cure kinetics of an epoxy/poly(oxypropylene)diamine/octadecylammonium modified montmorillonite system. Journal of Applied Polymer Science, 2006, 100, 1765-1771.	1.3	12
39	Preparation of Highly Porous Hydroxyapatite Ceramics from Cuttlefish Bone. Advances in Science and Technology, 2006, 49, 142.	0.2	6
40	Synthesis and characterization of organic-inorganic hybrids based on epoxy resin and 3-glycidyloxypropyltrimethoxysilane. Journal of Applied Polymer Science, 2004, 92, 498-505.	1.3	38
41	Study of cure kinetics of epoxy-silica organic–inorganic hybrid materials. Thermochimica Acta, 2004, 414, 219-225.	1.2	47
42	Curing kinetics and chemorheology of epoxy/anhydride system. Journal of Applied Polymer Science, 2003, 90, 3012-3019.	1.3	96
43	DSC study on simultaneous interpenetrating polymer network formation of epoxy resin and unsaturated polyester. Journal of Applied Polymer Science, 2002, 83, 2689-2698.	1.3	22
44	Cure kinetics of neat and carbon-fiber-reinforced TGDDM/DDS epoxy systems. Journal of Applied Polymer Science, 1996, 61, 1025-1037.	1.3	99
45	Estimation of the compatibility of poly(2,6-dimethyl-1,4-phenylene oxide) and poly(fluorostyrene-co-bromostyrene) from dilute solution viscosity measurements. European Polymer Journal, 1992, 28, 5-7.	2.6	10
46	Viscometric behaviour of dilute solutions of copolymers of ortho- and para-halogenated styrene. European Polymer Journal, 1991, 27, 713-716.	2.6	1
47	Estimation of the three dimensional solubility parameter of copolymers of halogenated styrene. Journal of Molecular Liquids, 1990, 44, 237-246.	2.3	3