Juan A Carcel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4213665/publications.pdf

Version: 2024-02-01

103 papers	5,285 citations	41 h-index	91712 69 g-index
132	132	132	3153 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Ultrasound-Assisted Extraction of Natural Products. Food Engineering Reviews, 2011, 3, 108-120.	3.1	334
2	Food process innovation through new technologies: Use of ultrasound. Journal of Food Engineering, 2012, 110, 200-207.	2.7	244
3	High intensity ultrasound effects on meat brining. Meat Science, 2007, 76, 611-619.	2.7	181
4	Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innovative Food Science and Emerging Technologies, 2013, 17, 120-129.	2.7	166
5	Influence of High-Intensity Ultrasound on Drying Kinetics of Persimmon. Drying Technology, 2007, 25, 185-193.	1.7	156
6	Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 2007, 78, 472-479.	2.7	154
7	Influence of the Applied Acoustic Energy on the Drying of Carrots and Lemon Peel. Drying Technology, 2009, 27, 281-287.	1.7	149
8	Power Ultrasound Mass Transfer Enhancement in Food Drying. Food and Bioproducts Processing, 2007, 85, 247-254.	1.8	145
9	Ultrasonic drying of foodstuff in a fluidized bed: Parametric study. Ultrasonics, 2006, 44, e539-e543.	2.1	141
10	Influence of high intensity ultrasound application on mass transport, microstructure and textural properties of pork meat (Longissimus dorsi) brined at different NaCl concentrations. Journal of Food Engineering, 2013, 119, 84-93.	2.7	141
11	Air-borne ultrasound application in the convective drying of strawberry. Journal of Food Engineering, 2014, 128, 132-139.	2.7	131
12	Enhancement of Water Transport and Microstructural Changes Induced by High-Intensity Ultrasound Application on Orange Peel Drying. Food and Bioprocess Technology, 2012, 5, 2256-2265.	2.6	121
13	Effects of high-intensity ultrasound on drying kinetics and antioxidant properties of passion fruit peel. Journal of Food Engineering, 2016, 170, 108-118.	2.7	112
14	Improvement of Convective Drying of Carrot by Applying Power Ultrasound—Influence of Mass Load Density. Drying Technology, 2011, 29, 174-182.	1.7	98
15	Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying. Food and Bioproducts Processing, 2012, 90, 624-632.	1.8	91
16	Intensification of Low-Temperature Drying by Using Ultrasound. Drying Technology, 2012, 30, 1199-1208.	1.7	85
17	Modeling Ultrasonically Assisted Convective Drying of Eggplant. Drying Technology, 2011, 29, 1499-1509.	1.7	83
18	Ultrasonically enhanced low-temperature drying of apple: Influence on drying kinetics and antioxidant potential. Journal of Food Engineering, 2014, 138, 35-44.	2.7	82

#	Article	IF	CITATIONS
19	Influence of material structure on air-borne ultrasonic application in drying. Ultrasonics Sonochemistry, 2014, 21, 1235-1243.	3.8	82
20	Water sorption isotherms for lemon peel at different temperatures and isosteric heats. LWT - Food Science and Technology, 2008, 41, 18-25.	2.5	81
21	Composition assessment of raw meat mixtures using ultrasonics. Meat Science, 2001, 57, 365-370.	2.7	78
22	Innovative pre-treatments to enhance food drying: a current review. Current Opinion in Food Science, 2020, 35, 20-26.	4.1	76
23	Ultrasound-Assisted Air-Drying of Apple (Malus domestica L.) and Its Effects on the Vitamin of the Dried Product. Food and Bioprocess Technology, 2015, 8, 1503-1511.	2.6	74
24	Impact of applied ultrasonic power on the low temperature drying of apple. Ultrasonics Sonochemistry, 2016, 28, 100-109.	3.8	74
25	Influence of ultrasound application on both the osmotic pretreatment and subsequent convective drying of pineapple (Ananas comosus). Innovative Food Science and Emerging Technologies, 2017, 41, 284-291.	2.7	72
26	Improvement of water transport mechanisms during potato drying by applying ultrasound. Journal of the Science of Food and Agriculture, 2011, 91, 2511-2517.	1.7	70
27	Drying intensification combining ultrasound pre-treatment and ultrasound-assisted air drying. Journal of Food Engineering, 2017, 215, 72-77.	2.7	69
28	Application of low intensity ultrasonics to cheese manufacturing processes. Ultrasonics, 2002, 40, 19-23.	2.1	67
29	Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality. Journal of the Science of Food and Agriculture, 2018, 98, 1660-1673.	1.7	66
30	Low-temperature drying of salted cod (Gadus morhua) assisted by high power ultrasound: Kinetics and physical properties. Innovative Food Science and Emerging Technologies, 2014, 23, 146-155.	2.7	62
31	Use of ultrasound to assess Cheddar cheese characteristics. Ultrasonics, 2000, 38, 727-730.	2.1	59
32	Cheese Maturity Assessment Using Ultrasonics. Journal of Dairy Science, 2000, 83, 248-254.	1.4	58
33	Extraction kinetics modeling of antioxidants from grape stalk (Vitis vinifera var. Bobal): Influence of drying conditions. Journal of Food Engineering, 2010, 101, 49-58.	2.7	56
34	Review: the Use of Electromyography on Food Texture Assessment. Food Science and Technology International, 2001, 7, 461-471.	1.1	55
35	On the effect of ultrasound-assisted atmospheric freeze-drying on the antioxidant properties of eggplant. Food Research International, 2018, 106, 580-588.	2.9	55
36	Effects of ultrasound-assisted air-drying on vitamins and carotenoids of cherry tomatoes. Drying Technology, 2016, 34, 986-996.	1.7	54

#	Article	IF	CITATIONS
37	Ethanol pre-treatment to ultrasound-assisted convective drying of apple. Innovative Food Science and Emerging Technologies, 2020, 61, 102328.	2.7	53
38	Impact of power ultrasound on chemical and physicochemical quality indicators of strawberries dried by convection. Food Chemistry, 2014, 161, 40-46.	4.2	49
39	Mathematical modelling of the drying curves of kiwi fruits: influence of the ripening stage. Journal of the Science of Food and Agriculture, 2005, 85, 425-432.	1.7	45
40	Influence of Temperature, Air Velocity, and Ultrasound Application on Drying Kinetics of Grape Seeds. Drying Technology, 2014, 32, 68-76.	1.7	45
41	Model-based investigation into atmospheric freeze drying assisted by power ultrasound. Journal of Food Engineering, 2015, 151, 7-15.	2.7	44
42	Influence of air temperature on drying kinetics and antioxidant potential of olive pomace. Journal of Food Engineering, 2013, 119, 516-524.	2.7	38
43	Ultrasound assisted lowâ€temperature drying of kiwifruit: Effects on drying kinetics, bioactive compounds and antioxidant activity. Journal of the Science of Food and Agriculture, 2019, 99, 2901-2909.	1.7	38
44	Modelling of the rehydration process of brocolli florets. European Food Research and Technology, 2001, 212, 449-453.	1.6	36
45	Ultrasonic Intensification of Grape Stalk Convective Drying: Kinetic and Energy Efficiency. Drying Technology, 2013, 31, 942-950.	1.7	36
46	Drying and storage of olive leaf extracts. Influence on polyphenols stability. Industrial Crops and Products, 2016, 79, 232-239.	2.5	33
47	Improvement of Mass Transfer by Freezing Pre-treatment and Ultrasound Application on the Convective Drying of Beetroot (Beta vulgaris L.). Food and Bioprocess Technology, 2018, 11, 72-83.	2.6	33
48	Stabilization of apple peel by drying. Influence of temperature and ultrasound application on drying kinetics and product quality. Drying Technology, 2019, 37, 559-568.	1.7	33
49	Influence of air velocity and temperature on ultrasonically assisted low temperature drying of eggplant. Food and Bioproducts Processing, 2016, 100, 282-291.	1.8	32
50	Effect of Air Temperature on Convective Drying Assisted by High Power Ultrasound. Defect and Diffusion Forum, 2006, 258-260, 563-574.	0.4	31
51	Ultrasonically assisted antioxidant extraction from grape stalks and olive leaves. Physics Procedia, 2010, 3, 147-152.	1.2	31
52	Influence of temperature and ultrasound on drying kinetics and antioxidant properties of red pepper. Drying Technology, 2019, 37, 486-493.	1.7	30
53	Quality Control of Cheese Maturation and Defects Using Ultrasonics. Journal of Food Science, 2001, 66, 100-104.	1.5	28
54	NONINVASIVE ULTRASONIC MEASUREMENTS IN THE FOOD INDUSTRY. Food Reviews International, 2002, 18, 123-133.	4.3	28

#	Article	IF	CITATIONS
55	Influence of pre-treatment and storage temperature on the evolution of the colour of dried persimmon. LWT - Food Science and Technology, 2010, 43, 1191-1196.	2.5	27
56	Development of dried probiotic apple cubes incorporated with Lactobacillus casei NRRL B-442. Journal of Functional Foods, 2018, 41, 48-54.	1.6	27
57	Milk powder agglomerate growth and properties in fluidized bed agglomeration. Dairy Science and Technology, 2013, 93, 523-535.	2.2	26
58	Antioxidant potential of atmospheric freeze-dried apples as affected by ultrasound application and sample surface. Drying Technology, 2017, 35, 957-968.	1.7	26
59	Ultrasonically enhanced desalting of cod (Gadus morhua). Mass transport kinetics and structural changes. LWT - Food Science and Technology, 2014, 59, 130-137.	2.5	25
60	Ultrasonically assisted atmospheric freeze-drying of button mushroom. Drying kinetics and product quality. Drying Technology, 2018, 36, 1814-1823.	1.7	24
61	Energy and environmental analysis of ultrasound-assisted atmospheric freeze-drying of food. Journal of Food Engineering, 2020, 283, 110031.	2.7	23
62	Influence of Drying on the Retention of Olive Leaf Polyphenols Infused into Dried Apple. Food and Bioprocess Technology, 2015, 8, 120-133.	2.6	20
63	On the investigation into the kinetics of the ultrasound-assisted atmospheric freeze drying of eggplant. Drying Technology, 2017, 35, 1818-1831.	1.7	20
64	Ultrasound Effects on the Mass Transfer Processes during Drying Kinetic of Olive Leaves (<i>Olea Europea</i> , var. Serrana). Defect and Diffusion Forum, 0, 297-301, 1083-1090.	0.4	18
65	Ultrasonically assisted low-temperature drying of desalted codfish. LWT - Food Science and Technology, 2016, 65, 444-450.	2.5	18
66	Artichoke by Products as a Source of Antioxidant and Fiber: How It Can Be Affected by Drying Temperature. Foods, 2021, 10, 459.	1.9	18
67	Effect of Ultrasonic-Assisted Blanching on Size Variation, Heat Transfer, and Quality Parameters of Mushrooms. Food and Bioprocess Technology, 2015, 8, 41-53.	2.6	17
68	Ultrasound-assisted drying of orange peel in atmospheric freeze-dryer and convective dryer operated at moderate temperature. Drying Technology, 2020, 38, 259-267.	1.7	17
69	PEF as pretreatment to ultrasound-assisted convective drying: Influence on quality parameters of orange peel. Innovative Food Science and Emerging Technologies, 2021, 72, 102753.	2.7	17
70	Non-destructive analysis of Manchego cheese texture using impact force–deformation and acoustic impulse–response techniques. Journal of Food Engineering, 2007, 82, 238-245.	2.7	14
71	Influence of Ultrasound-Assisted Air-Drying and Conventional Air-Drying on the Activity of Apple Enzymes. Journal of Food Processing and Preservation, 2017, 41, e12832.	0.9	14
72	CHEESE HARDNESS ASSESSMENT BY EXPERTS AND UNTRAINED JUDGES. Journal of Sensory Studies, 2001, 16, 277-285.	0.8	12

#	Article	IF	CITATIONS
73	PREDICTION OF INSTRUMENTAL AND SENSORY TEXTURAL CHARACTERISTICS OF MAHON CHEESE FROM ULTRASONIC MEASUREMENTS. Journal of Texture Studies, 2000, 31, 631-643.	1.1	11
74	Ultrasound-Assisted Hot Air Drying of Foods. Food Engineering Series, 2011, , 511-534.	0.3	11
75	Mathematical Modeling of Moisture Distribution and Kinetics in Cheese Drying. Drying Technology, 2012, 30, 1247-1255.	1.7	11
76	Influence of the Ultrasonic Power Applied on Freeze Drying Kinetics. Physics Procedia, 2015, 70, 850-853.	1.2	11
77	Use of Ultrasound in the Distilled Water Pretreament and Convective Drying of Pineapple. Advanced Structured Materials, 2016, , 71-87.	0.3	11
78	Drying Kinetics of Grape Stalk. Defect and Diffusion Forum, 2006, 258-260, 225-230.	0.4	10
79	Simulation of grape stalk deep-bed drying. Journal of Food Engineering, 2009, 90, 308-314.	2.7	10
80	Relationships among selected variables affecting the resistance of Salmonella enterica, serovar Enteritidis to thermosonication. Journal of Food Engineering, 2010, 98, 71-75.	2.7	10
81	Airborne power ultrasound for drying process intensification at low temperatures: Use of a stepped-grooved plate transducer. Drying Technology, 2021, 39, 245-258.	1.7	10
82	Atmospheric freeze drying assisted by power ultrasound. IOP Conference Series: Materials Science and Engineering, 2012, 42, 012021.	0.3	9
83	Ultrasonic drying for food preservation. , 2015, , 875-910.		8
84	Combining ethanol preâ€treatment and ultrasoundâ€assisted drying to enhance apple chips by fortification with black carrot anthocyanin. Journal of the Science of Food and Agriculture, 2021, 101, 2078-2089.	1.7	8
85	Acoustic fields of acid suspensions containing cassava bagasse: Influence of physical properties on acoustic attenuation. Applied Acoustics, 2021, 177, 107922.	1.7	8
86	Drying of a Low Porosity Product (Carrot) as Affected by Power Ultrasound. Defect and Diffusion Forum, 2008, 273-276, 764-769.	0.4	7
87	Influence on Olive Leaves (<i>Olea Europaea</i> , var. Serrana) Antioxidant Extraction Kinetics of Ultrasound Assisted Drying. Defect and Diffusion Forum, 2010, 297-301, 1077-1082.	0.4	7
88	Use of Novel Drying Technologies to Improve the Retention of Infused Olive Leaf Polyphenols. Drying Technology, 2015, 33, 1051-1060.	1.7	6
89	Extraction of Antioxidant Compounds from Grape Stalk Dried at Different Conditions. Defect and Diffusion Forum, 2009, 283-286, 604-609.	0.4	5
90	Management and optimization of curing chambers. Journal of Food Engineering, 2005, 68, 33-41.	2.7	4

#	Article	IF	CITATIONS
91	Effect of Ultrasound on Henna Leaves Drying and Extraction of Lawsone: Experimental and Modeling Study. Energies, 2021, 14, 1329.	1.6	4
92	Effect of Air Temperature on Convective Drying Assisted by High Power Ultrasound. Defect and Diffusion Forum, 0, , 563-574.	0.4	4
93	Mass Transfer Modelling in an Acoustic-Assisted Osmotic Process. Defect and Diffusion Forum, 2006, 258-260, 600-609.	0.4	2
94	Ultrasonic characterization of pork meat salting. IOP Conference Series: Materials Science and Engineering, 2012, 42, 012043.	0.3	1
95	Influence of Brine Concentration on Moisture and NaCl Transport During Meat Salting. Food Engineering Series, 2015, , 519-525.	0.3	1
96	Sorption Isotherms and Thermodynamic Properties of Pomegranate Peels. Foods, 2022, 11, 2009.	1.9	1
97	Airborne power ultrasonic transducers with stepped circular radiator for lyophilization at atmospheric pressure. Proceedings of Meetings on Acoustics, 2019, , .	0.3	0
98	State-of-the-art in the application of airborne power ultrasonic technologies in atmospheric freeze drying processes. Proceedings of Meetings on Acoustics, 2019 , , .	0.3	0
99	DESIDRATAÇÃO DE MAÇÃS (MALUS DOMESTICA L.) UTILIZANDO SECAGEM A AR ASSISTIDA POR ULTRA-SO 0, , .	М.,	0
100	SECAGEM DE MAÃ \sharp Ã f S UTILIZANDO SECAGEM A AR ASSISTIDA POR ULTRA-SOM. , 0, , .		0
101	Energy analysis of an ultrasound-assisted atmospheric freeze-drying process for food. , 0, , .		0
102	Influence of drying temperature and ultrasound application in some quality properties of apple skin , $0, , .$		0
103	Influence of the temperature and ultrasound application in drying kinetics of apple skin. , 0, , .		0