Pascale V Guillot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4213430/publications.pdf

Version: 2024-02-01

30 papers 1,623 citations

393982 19 h-index 25 g-index

31 all docs

31 docs citations

times ranked

31

2202 citing authors

#	Article	IF	CITATIONS
1	Induced pluripotent stem cells derived from amniotic fluid stem cells., 2021,, 1-13.		2
2	Small extracellular vesicles secreted from human amniotic fluid mesenchymal stromal cells possess cardioprotective and promigratory potential. Basic Research in Cardiology, 2020, 115, 26.	2.5	62
3	Human mid-trimester amniotic fluid (stem) cells lack expression of the pluripotency marker OCT4A. Scientific Reports, 2019, 9, 8126.	1.6	6
4	Embryonic Stem Cell-Derived Mesenchymal Stem Cells (MSCs) Have a Superior Neuroprotective Capacity Over Fetal MSCs in the Hypoxic-Ischemic Mouse Brain. Stem Cells Translational Medicine, 2018, 7, 439-449.	1.6	62
5	Neuroprotection of the hypoxic-ischemic mouse brain by human CD117+CD90+CD105+ amniotic fluid stem cells. Scientific Reports, 2018, 8, 2425.	1.6	20
6	The presence of human mesenchymal stem cells of renal origin in amniotic fluid increases with gestational time. Stem Cell Research and Therapy, $2018, 9, 113$.	2.4	18
7	Micro-computed tomography reconstructions of tibiae of stem cell transplanted osteogenesis imperfecta mice. Scientific Data, 2018, 5, 180100.	2.4	3
8	Counteracting bone fragility with human amniotic mesenchymal stem cells. Scientific Reports, 2016, 6, 39656.	1.6	23
9	Human Chorionic Stem Cells: Podocyte Differentiation and Potential for the Treatment of Alport Syndrome. Stem Cells and Development, 2016, 25, 395-404.	1.1	18
10	Induced pluripotent stem (iPS) cells from human fetal stem cells. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2016, 31, 112-120.	1.4	5
11	Immune Regulatory Properties of CD117 ^{pos} Amniotic Fluid Stem Cells Vary According to Gestational Age. Stem Cells and Development, 2015, 24, 132-143.	1.1	46
12	In utero therapy for congenital disorders using amniotic fluid stem cells. Frontiers in Pharmacology, 2014, 5, 270.	1.6	29
13	Potential of Human Fetal Chorionic Stem Cells for the Treatment of Osteogenesis Imperfecta. Stem Cells and Development, 2014, 23, 262-276.	1.1	34
14	Principles of Stem Cell Biology. , 2014, , 39-55.		1
15	Human Fetal and Adult Bone Marrow-Derived Mesenchymal Stem Cells Use Different Signaling Pathways for the Initiation of Chondrogenesis. Stem Cells and Development, 2014, 23, 541-554.	1.1	54
16	CD117+ amniotic fluid stem cells vary their immune regulatory properties according to gestational age. Cytotherapy, 2014, 16, S80.	0.3	0
17	Unravelling the Pluripotency Paradox in Fetal and Placental Mesenchymal Stem Cells: Oct-4 Expression and the Case of the Emperor's New Clothes. Stem Cell Reviews and Reports, 2013, 9, 408-421.	5.6	28
18	Placenta as a reservoir of stem cells: an underutilized resource?. British Medical Bulletin, 2013, 105, 43-68.	2.7	73

#	Article	IF	CITATIONS
19	Human Mid-Trimester Amniotic Fluid Stem Cells Cultured Under Embryonic Stem Cell Conditions with Valproic Acid Acquire Pluripotent Characteristics. Stem Cells and Development, 2013, 22, 444-458.	1.1	62
20	Molecular Signature of Human amniotic Fluid Stem Cells During Fetal Development. Current Stem Cell Research and Therapy, 2013, 8, 73-81.	0.6	33
21	Therapeutic Potential of Amniotic Fluid Stem Cells. Current Stem Cell Research and Therapy, 2013, 8, 117-124.	0.6	17
22	Valproic Acid Confers Functional Pluripotency to Human Amniotic Fluid Stem Cells in a Transgene-free Approach. Molecular Therapy, 2012, 20, 1953-1967.	3.7	145
23	Ontological Differences in First Compared to Third Trimester Human Fetal Placental Chorionic Stem Cells. PLoS ONE, 2012, 7, e43395.	1.1	56
24	Transplantation of human fetal blood stem cells in the osteogenesis imperfecta mouse leads to improvement in multiscale tissue properties. Blood, 2011, 117, 1053-1060.	0.6	78
25	Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources. Differentiation, 2008, 76, 946-957.	1.0	109
26	Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood, 2008, 111, 1717-1725.	0.6	165
27	Stem Cells Differentiation. , 2008, , 83-93.		0
28	Human First-Trimester Fetal MSC Express Pluripotency Markers and Grow Faster and Have Longer Telomeres Than Adult MSC. Stem Cells, 2007, 25, 646-654.	1.4	396
29	Fetal Mesenchymal Stem Cells are More Primitive than Adult Mesenchymal Stem Cells. , 2007, , 17-34.		1
30	Fetal Stem Cells: Betwixt and Between. Seminars in Reproductive Medicine, 2006, 24, 340-347.	0.5	77