
Patricia A Labosky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/421343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The NIH "BEST―programs: Institutional programs, the program evaluation, and early data. FASEB Journal, 2020, 34, 3570-3582.	0.5	39
2	Evolution of a functional taxonomy of career pathways for biomedical trainees. Journal of Clinical and Translational Science, 2018, 2, 63-65.	0.6	16
3	FOXD3 Regulates Pluripotent Stem Cell Potential by Simultaneously Initiating and Repressing Enhancer Activity. Cell Stem Cell, 2016, 18, 104-117.	11.1	93
4	The origin and implementation of the Broadening Experiences in Scientific Training programs: an NIH common fund initiative. FASEB Journal, 2016, 30, 507-514.	0.5	71
5	The NIH Extracellular RNA Communication Consortium. Journal of Extracellular Vesicles, 2015, 4, 27493.	12.2	60
6	Vascular endothelial growth factor coordinates islet innervation via vascular scaffolding. Development (Cambridge), 2014, 141, 1480-1491.	2.5	77
7	Transcriptional targets of Foxd3 in murine ES cells. Stem Cell Research, 2014, 12, 233-240.	0.7	24
8	Embryonic domains of the aorta derived from diverse origins exhibit distinct properties that converge into a common phenotype in the adult. Journal of Molecular and Cellular Cardiology, 2014, 69, 88-96.	1.9	49
9	Ground-State Transcriptional Requirements for Skin-Derived Precursors. Stem Cells and Development, 2013, 22, 1779-1788.	2.1	7
10	A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells. Development (Cambridge), 2013, 140, 2269-2279.	2.5	77
11	Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12709-12714.	7.1	92
12	Transgenic Mouse Models. Methods in Molecular Biology, 2013, 1032, 1-17.	0.9	3
13	Renshaw cell interneuron specialization is controlled by a temporally restricted transcription factor program. Development (Cambridge), 2012, 139, 179-190.	2.5	96
14	Isolation and Culture of Neural Crest Cells from Embryonic Murine Neural Tube. Journal of Visualized Experiments, 2012, , e4134.	0.3	19
15	Enteric nervous system specific deletion of Foxd3 disrupts glial cell differentiation and activates compensatory enteric progenitors. Developmental Biology, 2012, 363, 373-387.	2.0	38
16	Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates. Development (Cambridge), 2011, 138, 641-652.	2.5	97
17	Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation. Developmental Biology, 2011, 349, 321-330.	2.0	41
18	A predicted hairpin cluster correlates with barriers to PCR, sequencing and possibly BAC recombineering. Scientific Reports, 2011, 1, 106.	3.3	21

PATRICIA A LABOSKY

#	Article	IF	CITATIONS
19	Functional interaction between Foxd3 and Pax3 in cardiac neural crest development. Genesis, 2011, 49, 10-23.	1.6	24
20	Loss of Foxd3 Results in Decreased β-Cell Proliferation and Glucose Intolerance During Pregnancy. Endocrinology, 2011, 152, 4589-4600.	2.8	30
21	Conditional Gene Targeting in Mouse Pancreatic β-Cells. Diabetes, 2010, 59, 3090-3098.	0.6	288
22	Transcriptional Control of Neural Crest Development. Colloquium Series on Developmental Biology, 2010, 1, 1-227.	0.2	30
23	Epigenetic Priming of a Pre-B Cell-Specific Enhancer through Binding of Sox2 and Foxd3 at the ESC Stage. Cell Stem Cell, 2010, 7, 114-126.	11.1	79
24	Endocardial cells are a distinct endothelial lineage derived from Flk1+ multipotent cardiovascular progenitors. Developmental Biology, 2009, 333, 78-89.	2.0	106
25	Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females. Brain, 2009, 132, 1563-1576.	7.6	178
26	Regulation of Embryonic Stem Cell Self-Renewal and Pluripotency by Foxd3. Stem Cells, 2008, 26, 2475-2484.	3.2	93
27	Requirement for Foxd3 in the maintenance of neural crest progenitors. Development (Cambridge), 2008, 135, 1615-1624.	2.5	171
28	Identification of Arx transcriptional targets in the developing basal forebrain. Human Molecular Genetics, 2008, 17, 3740-3760.	2.9	121
29	Mouse Primordial Germ Cells. Methods in Molecular Biology, 2008, 461, 187-199.	0.9	4
30	SULF1 and SULF2 regulate heparan sulfate-mediated GDNF signaling for esophageal innervation. Development (Cambridge), 2007, 134, 3327-3338.	2.5	148
31	Resident Endothelial Precursors in Muscle, Adipose, and Dermis Contribute to Postnatal Vasculogenesis. Stem Cells, 2007, 25, 3101-3110.	3.2	77
32	Expression and shifting subcellular localization of the transcription factor, Foxd3, in embryonic and adult pancreas. Gene Expression Patterns, 2006, 6, 971-977.	0.8	27
33	FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development. Development (Cambridge), 2006, 133, 4827-4838.	2.5	44
34	HIF-2Â regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes and Development, 2006, 20, 557-570.	5.9	721
35	Neural Crest Stem Cells. , 2006, 589, 206-212.		33
36	Foxd3 is required in the trophoblast progenitor cell lineage of the mouse embryo. Developmental Biology, 2005, 285, 126-137.	2.0	90

PATRICIA A LABOSKY

#	Article	IF	CITATIONS
37	A dermal niche for multipotent adult skin-derived precursor cells. Nature Cell Biology, 2004, 6, 1082-1093.	10.3	692
38	Electroporation of Murine Embryonic Stem Cells: A Step-by-Step Guide. Stem Cells, 2004, 22, 243-249.	3.2	51
39	Online with Stem Cells. Developmental Cell, 2003, 5, 827-828.	7.0	0
40	Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes and Development, 2002, 16, 2650-2661.	5.9	323
41	The winged helix gene,Foxb1, controls development of mammary glands and regions of the CNS that regulate the milk-ejection reflex. Genesis, 2001, 29, 60-71.	1.6	16
42	The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate. Development (Cambridge), 2001, 128, 4127-4138.	2.5	247
43	Mesendoderm Induction and Reversal of Left–Right Pattern by Mouse Gdf1, a Vg1-Related Gene. Developmental Biology, 2000, 227, 495-509.	2.0	65
44	The winged helix transcription factor Hfh2 is expressed in neural crest and spinal cord during mouse development. Mechanisms of Development, 1998, 76, 185-190.	1.7	102
45	A Role forIndian hedgehogin Extraembryonic Endoderm Differentiation in F9 Cells and the Early Mouse Embryo. Developmental Biology, 1997, 187, 298-310.	2.0	53
46	The Chromosomal Mapping of Four Genes Encoding Winged Helix Proteins Expressed Early in Mouse Development. Genomics, 1996, 34, 241-245.	2.9	13
47	Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature, 1995, 377, 748-750.	27.8	821
48	The Pem Homeobox Gene Is X-Linked and Exclusively Expressed in Extraembryonic Tissues during Early Murine Development. Developmental Biology, 1994, 166, 170-179.	2.0	106
49	Embryonic Germ Cell Lines and Their Derivation from Mouse Primordial Germ Cells. Novartis Foundation Symposium, 1994, 182, 157-178.	1.1	40
50	Homeobox-Containing Genes in Teratocarcinoma Embryoid Bodies: A Possible Role for Hox-D12 (Hox-4.7) in Establishing the Extraembryonic Endoderm Lineage in the Mouse. Developmental Biology, 1993, 159, 232-244.	2.0	8