
Michael J Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4213394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesosphere and Lower Thermosphere Changes Associated With the 2 July 2019 Total Eclipse in South America Over the Andes Lidar Observatory, Cerro Pachon, Chile. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	2
2	Cloud Formation From a Localized Water Release in the Upper Mesosphere: Indication of Rapid Cooling. Journal of Geophysical Research: Space Physics, 2021, 126, e2019JA027285.	2.4	7
3	Mesospheric Mountain Wave Activity in the Lee of the Southern Andes. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033268.	3.3	6
4	Evidence for Horizontal Blocking and Reflection of a Small‣cale Gravity Wave in the Mesosphere. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031828.	3.3	4
5	Investigating an Unusually Large 28â€Day Oscillation in Mesospheric Temperature Over Antarctica Using Groundâ€Based and Satellite Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8576-8593.	3.3	7
6	Largeâ€Amplitude Mountain Waves in the Mesosphere Observed on 21 June 2014 During DEEPWAVE: 1. Wave Development, Scales, Momentum Fluxes, and Environmental Sensitivity. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10364-10384.	3.3	21
7	Regional Distribution of Mesospheric Smallâ€Scale Gravity Waves During DEEPWAVE. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7069-7081.	3.3	12
8	First Groundâ€Based Conjugate Observations of Stable Auroral Red (SAR) Arcs. Journal of Geophysical Research: Space Physics, 2019, 124, 4658-4671.	2.4	12
9	Thermal structure of the mesopause region during the WADIS-2 rocket campaign. Atmospheric Chemistry and Physics, 2019, 19, 77-88.	4.9	3
10	Simultaneous in situ measurements of small-scale structures in neutral, plasma, and atomic oxygen densities during the WADIS sounding rocket project. Atmospheric Chemistry and Physics, 2019, 19, 11443-11460.	4.9	11
11	Largeâ€Amplitude Mountain Waves in the Mesosphere Observed on 21 June 2014 During DEEPWAVE: 2. Nonlinear Dynamics, Wave Breaking, and Instabilities. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10006-10032.	3.3	15
12	Retrieval of intrinsic mesospheric gravity wave parameters using lidar and airglow temperature and meteor radar wind data. Atmospheric Measurement Techniques, 2019, 12, 5997-6015.	3.1	12
13	Investigating Gravity Waves in Polar Mesospheric Clouds Using Tomographic Reconstructions of AIM Satellite Imagery. Journal of Geophysical Research: Space Physics, 2018, 123, 955-973.	2.4	8
14	Unexpected Occurrence of Mesospheric Frontal Gravity Wave Events Over South Pole (90°S). Journal of Geophysical Research D: Atmospheres, 2018, 123, 160-173.	3.3	13
15	Observations of the Breakdown of Mountain Waves Over the Andes Lidar Observatory at Cerro Pachon on 8/9 July 2012. Journal of Geophysical Research D: Atmospheres, 2018, 123, 276-299.	3.3	19
16	First Observed Temporal Development of a Noctilucent Cloud Ice Void. Geophysical Research Letters, 2018, 45, 10,003-10,010.	4.0	3
17	Largeâ€Amplitude Mountain Waves in the Mesosphere Accompanying Weak Crossâ€Mountain Flow During DEEPWAVE Research Flight RF22. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9992.	3.3	26
18	Seasonal Propagation Characteristics of MSTIDs Observed at High Latitudes Over Central Alaska Using the Poker Flat Incoherent Scatter Radar. Journal of Geophysical Research: Space Physics, 2018, 123, 5717-5737.	2.4	12

#	Article	IF	CITATIONS
19	Numerical modeling of a multiscale gravity wave event and its airglow signatures over Mount Cook, New Zealand, during the DEEPWAVE campaign. Journal of Geophysical Research D: Atmospheres, 2017, 122, 846-860.	3.3	33
20	Secondary gravity wave generation over New Zealand during the DEEPWAVE campaign. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7834-7850.	3.3	44
21	Does Strong Tropospheric Forcing Cause Largeâ€Amplitude Mesospheric Gravity Waves? A DEEPWAVE Case Study. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,422.	3.3	33
22	New AIM/CIPS global observations of gravity waves near 50–55Âkm. Geophysical Research Letters, 2017, 44, 7044-7052.	4.0	18
23	Twin mesospheric bores observed over Brazilian equatorial region. Annales Geophysicae, 2016, 34, 91-96.	1.6	8
24	Evidence of dispersion and refraction of a spectrally broad gravity wave packet in the mesopause region observed by the Na lidar and Mesospheric Temperature Mapper above Logan, Utah. Journal of Geophysical Research D: Atmospheres, 2016, 121, 579-594.	3.3	26
25	Largeâ€amplitude mesospheric response to an orographic wave generated over the Southern Ocean Auckland Islands (50.7ŰS) during the DEEPWAVE project. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1431-1441.	3.3	33
26	Dynamics of Orographic Gravity Waves Observed in the Mesosphere over the Auckland Islands during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Journals of the Atmospheric Sciences, 2016, 73, 3855-3876.	1.7	37
27	Stratospheric Gravity Wave Fluxes and Scales during DEEPWAVE. Journals of the Atmospheric Sciences, 2016, 73, 2851-2869.	1.7	58
28	The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An Airborne and Ground-Based Exploration of Gravity Wave Propagation and Effects from Their Sources throughout the Lower and Middle Atmosphere. Bulletin of the American Meteorological Society, 2016, 97, 425-453.	3.3	148
29	Momentum flux estimates accompanying multiscale gravity waves over Mount Cook, New Zealand, on 13 July 2014 during the DEEPWAVE campaign. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9323-9337.	3.3	45
30	Simultaneous observations of the phaseâ€locked 2 day wave at Adelaide, Cerro Pachon, and Darwin. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1808-1825.	3.3	7
31	Investigating seasonal gravity wave activity in the summer polar mesosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 127, 8-20.	1.6	15
32	Coordinated investigation of midlatitude upper mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and Advanced Mesospheric Temperature Mapper in Logan, Utah. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3756-3769.	3.3	27
33	Advanced mesospheric temperature mapper for high-latitude airglow studies. Applied Optics, 2014, 53, 5934.	1.8	61
34	Quantifying gravity wave momentum fluxes with Mesosphere Temperature Mappers and correlative instrumentation. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,583.	3.3	35
35	The life cycle of instability features measured from the Andes Lidar Observatory over Cerro Pachon on 24 March 2012. Journal of Geophysical Research D: Atmospheres, 2014, 119, 8872-8898.	3.3	32
36	Concentric gravity waves in polar mesospheric clouds from the Cloud Imaging and Particle Size experiment. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5115-5127.	3.3	21

#	Article	IF	CITATIONS
37	Investigation of a mesospheric gravity wave ducting event using coordinated sodium lidar and Mesospheric Temperature Mapper measurements at ALOMAR, Norway (69°N). Journal of Geophysical Research D: Atmospheres, 2014, 119, 9765-9778.	3.3	19
38	Morphology of polar mesospheric clouds as seen from space. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 104, 234-243.	1.6	21
39	Case study of an ice void structure in polar mesospheric clouds. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 104, 224-233.	1.6	13
40	Numerical and statistical evidence for longâ€range ducted gravity wave propagation over Halley, Antarctica. Geophysical Research Letters, 2013, 40, 4813-4817.	4.0	14
41	Three-dimensional tomographic reconstruction of mesospheric airglow structures using two-station ground-based image measurements. Applied Optics, 2012, 51, 963.	1.8	2
42	On the nature of shortâ€period mesospheric gravity wave propagation over Halley, Antarctica. Journal of Geophysical Research, 2012, 117, .	3.3	22
43	Assessment of gravity wave momentum flux measurement capabilities by meteor radars having different transmitter power and antenna configurations. Journal of Geophysical Research, 2012, 117, .	3.3	27
44	The evolution of a breaking mesospheric bore wave packet. Journal of Geophysical Research, 2011, 116, .	3.3	12
45	Analysis of gravity waves structures visible in noctilucent cloud images. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 2082-2090.	1.6	37
46	High-Latitude Gravity Wave Measurements in Noctilucent Clouds and Polar Mesospheric Clouds. , 2011, , 93-105.		23
47	Radar, lidar, and optical observations in the polar summer mesosphere shortly after a space shuttle launch. Journal of Geophysical Research, 2010, 115, .	3.3	18
48	Mesospheric wave signatures and equatorial plasma bubbles: A case study. Journal of Geophysical Research, 2010, 115, .	3.3	22
49	Polar mesospheric cloud structures observed from the cloud imaging and particle size experiment on the Aeronomy of Ice in the Mesosphere spacecraft: Atmospheric gravity waves as drivers for longitudinal variability in polar mesospheric cloud occurrence. Journal of Geophysical Research, 2010. 115.	3.3	58
50	OH and OI airglow layer modulation by ducted shortâ€period gravity waves: Effects of trapping altitude. Journal of Geophysical Research, 2010, 115, .	3.3	32
51	Dominant winter-time mesospheric wave signatures over a low latitude station, Hawaii (20.8°N): An investigation. Journal of Earth System Science, 2010, 119, 259-264.	1.3	5
52	Analysis and modeling of ducted and evanescent gravity waves observed in the Hawaiian airglow. Annales Geophysicae, 2009, 27, 3213-3224.	1.6	36
53	Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign. Annales Geophysicae, 2009, 27, 461-472.	1.6	62
54	Simultaneous observation of ionospheric plasma bubbles and mesospheric gravity waves during the SpreadFEx Campaign. Annales Geophysicae, 2009, 27, 1477-1487.	1.6	115

#	Article	IF	CITATIONS
55	Noctilucent cloud in the western Arctic in 2005: Simultaneous lidar and camera observations and analysis. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 446-452.	1.6	18
56	The Aeronomy of Ice in the Mesosphere (AIM) mission: Overview and early science results. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 289-299.	1.6	179
57	Gravity wave observations in the summertime polar mesosphere from the Cloud Imaging and Particle Size (CIPS) experiment on the AIM spacecraft. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 392-400.	1.6	56
58	Climatology of short-period mesospheric gravity waves over Halley, Antarctica (76°S, 27°W). Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 991-1000.	1.6	40
59	Critical level interaction of a gravity wave with background winds driven by a largeâ€scale wave perturbation. Journal of Geophysical Research, 2009, 114, .	3.3	9
60	First observation of an undular mesospheric bore in a Doppler duct. Annales Geophysicae, 2009, 27, 1399-1406.	1.6	33
61	Doppler ducting of short-period gravity waves by midlatitude tidal wind structure. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	29
62	A Very Active Sprite-Producing Storm Observed Over Argentina. Eos, 2007, 88, 117.	0.1	17
63	Seasonal oscillations in mesospheric temperatures at low-latitudes. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 2367-2378.	1.6	10
64	Characteristics of wave induced oscillations in mesospheric O2emission intensity and temperatures. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	20
65	An unusual mesospheric bore event observed at high latitudes over Antarctica. Geophysical Research Letters, 2006, 33, .	4.0	37
66	A novel joint space-wavenumber analysis of an unusual Antarctic gravity wave event. Geophysical Research Letters, 2006, 33, .	4.0	15
67	Strong electric fields from positive lightning strokes in the stratosphere. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	13
68	High frequency atmospheric gravity-wave properties using Fe-lidar and OH-imager observations. Geophysical Research Letters, 2005, 32, .	4.0	6
69	Terdiurnal wave signatures in the upper mesospheric temperature and their association with the wind fields at low latitudes (20ŰN). Journal of Geophysical Research, 2005, 110, .	3.3	29
70	Climatology of short-period gravity waves observed over northern Australia during the Darwin Area Wave Experiment (DAWEX) and their dominant source regions. Journal of Geophysical Research, 2005, 110, .	3.3	44
71	Comparison of simultaneous Na lidar and mesospheric nightglow temperature measurements and the effects of tides on the emission layer heights. Journal of Geophysical Research, 2005, 110, .	3.3	45
72	Seasonal variations of the gravity wave momentum flux in the Antarctic mesosphere and lower thermosphere. Journal of Geophysical Research, 2004, 109, .	3.3	52

#	Article	IF	CITATIONS
73	Thunderstorm and lightning characteristics associated with sprites in Brazil. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	25
74	A multidiagnostic investigation of the mesospheric bore phenomenon. Journal of Geophysical Research, 2003, 108, .	3.3	83
75	An investigation of gravity wave activity in the low-latitude upper mesosphere: Propagation direction and wind filtering. Journal of Geophysical Research, 2003, 108, .	3.3	77
76	Visual and lidar observations of noctilucent clouds above Logan, Utah, at 41.7°N. Journal of Geophysical Research, 2002, 107, ACL 2-1.	3.3	62
77	Statistical Characteristics of Sprite Halo Events Using Coincident Photometric and Imaging Data. Geophysical Research Letters, 2002, 29, 29-1.	4.0	42
78	Multiple wavelength optical observations of a long-lived meteor trail. Geophysical Research Letters, 2001, 28, 2779-2782.	4.0	13
79	Large amplitude perturbations in mesospheric OH Meinel and 87-Km Na lidar temperatures around the autumnal equinox. Geophysical Research Letters, 2001, 28, 1899-1902.	4.0	42
80	Mesospheric planetary waves at northern hemisphere fall equinox. Geophysical Research Letters, 2001, 28, 1903-1906.	4.0	29
81	Long-period wave signatures in mesospheric OH Meinel (6,2) band intensity and rotational temperature at mid-latitudes. Advances in Space Research, 2001, 27, 1171-1179.	2.6	36
82	An unusual airglow wave event observed at Cachoeira Paulista 23° S. Advances in Space Research, 2001, 27, 1749-1754.	2.6	30
83	Observing gravity wave activity in the mesopause region by means of airglow tomography. Advances in Space Research, 2000, 26, 903-906.	2.6	8
84	Terdiurnal oscillations in OH Meinel rotational temperatures for fall conditions at northern mid-latitude sites. Geophysical Research Letters, 2000, 27, 1799-1802.	4.0	44
85	Comparison of terdiurnal tidal oscillations in mesospheric OH rotational temperature and Na lidar temperature measurements at mid-latitudes for fall/spring conditions. Earth, Planets and Space, 1999, 51, 877-885.	2.5	39
86	Comparison of 1998 and 1999 Leonid Light Curve Morphology and Meteoroid Structure. Earth, Moon and Planets, 1998, 82/83, 351-367.	0.6	21
87	Preliminary Data on Variations of OH Airglow during the Leonid 1999 Meteor Storm. Earth, Moon and Planets, 1998, 82/83, 525-534.	0.6	1
88	Jet-Like Structures and Wake in Mg I (518 nm) Images of 1999 Leonid Storm Meteors. Earth, Moon and Planets, 1998, 82/83, 379-389.	0.6	8
89	Possible evidence of gravity wave coupling into the mid-latitude F region ionosphere during the SEEK Campaign. Geophysical Research Letters, 1998, 25, 1801-1804.	4.0	62
90	Observational limits for lidar, radar, and airglow imager measurements of gravity wave parameters. Journal of Geophysical Research, 1998, 103, 6427-6437.	3.3	59

#	ARTICLE	IF	CITATIONS
91	Long base-line measurements of short-period mesospheric gravity waves during the SEEK Campaign. Geophysical Research Letters, 1998, 25, 1797-1800.	4.0	21
92	Observational evidence of wave ducting and evanescence in the mesosphere. Journal of Geophysical Research, 1997, 102, 26301-26313.	3.3	115
93	High resolution OI (630 nm) image measurements of F-region depletion drifts during the Guará Campaign. Geophysical Research Letters, 1997, 24, 1699-1702.	4.0	60
94	Two-dimensional spectral analysis of mesospheric airglow image data. Applied Optics, 1997, 36, 7374.	2.1	185
95	Image measurements of short-period gravity waves at equatorial latitudes. Journal of Geophysical Research, 1997, 102, 26283-26299.	3.3	138
96	A two-dimensional spectral analysis of short period gravity waves imaged in the OI(557.7 nm) and near infra red OH nightglow emissions over Arecibo, Puerto Rico. Geophysical Research Letters, 1995, 22, 2473-2476.	4.0	37
97	Determination of horizontal and vertical structure of an unusual pattern of short period gravity waves imaged during ALOHA-93. Geophysical Research Letters, 1995, 22, 2837-2840.	4.0	43
98	All-sky measurements of short period waves imaged in the OI(557.7 nm), Na(589.2 nm) and near infrared OH and O2(0,1) nightglow emissions during the ALOHA-93 Campaign. Geophysical Research Letters, 1995, 22, 2833-2836.	4.0	160
99	Height measurements of OI(557.7 nm) gravity wave structure over the Hawaiian Islands during ALOHA-93. Geophysical Research Letters, 1995, 22, 2881-2884.	4.0	9
100	An investigation of intrinsic gravity wave signatures using coordinated lidar and nightglow image measurements. Geophysical Research Letters, 1995, 22, 2853-2856.	4.0	53
101	Spectrometric and imaging measurements of a spectacular gravity wave event observed during the ALOHA-93 Campaign. Geophysical Research Letters, 1995, 22, 2849-2852.	4.0	115
102	Measurements of noctilucent cloud heights: a bench mark for changes in the mesosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 1994, 56, 461-466.	0.9	10
103	Evidence of preferential directions for gravity wave propagation due to wind filtering in the middle atmosphere. Journal of Geophysical Research, 1993, 98, 6047-6057.	3.3	101
104	Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emissions. Planetary and Space Science, 1988, 36, 975-985.	1.7	176
105	The effect of atmospheric screening on the visible border of noctilucent clouds. Journal of Atmospheric and Solar-Terrestrial Physics, 1984, 46, 363-372.	0.9	11
106	An Investigation of Thunderstorms as a Source of Short Period Mesospheric Gravity Waves. Geophysical Monograph Series, 0, , 177-184.	0.1	11
107	Recent progress in mesospheric gravity wave studies using nigthglow imaging system. Revista Brasileira De Geofisica, 0, 25, 49-58.	0.2	12