Kyoungwhan Back

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4213345/publications.pdf

Version: 2024-02-01

38742 60623 7,341 128 50 81 citations h-index g-index papers 128 128 128 3654 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. Journal of Pineal Research, 2016, 61, 426-437.	7.4	333
2	Melatonin as a signal molecule triggering defense responses against pathogen attack in <i>Arabidopsis </i> and tobacco. Journal of Pineal Research, 2014, 57, 262-268.	7.4	221
3	On the significance of an alternate pathway of melatonin synthesis via 5â€methoxytryptamine: comparisons across species. Journal of Pineal Research, 2016, 61, 27-40.	7.4	219
4	Melatoninâ€rich transgenic rice plants exhibit resistance to herbicideâ€induced oxidative stress. Journal of Pineal Research, 2013, 54, 258-263.	7.4	208
5	<i>Arabidopsis</i> serotonin <i>N</i> â€acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen. Journal of Pineal Research, 2015, 58, 291-299.	7.4	185
6	Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice. Planta, 2007, 227, 263-272.	3.2	175
7	Melatonin promotes seminal root elongation and root growth in transgenic rice after germination. Journal of Pineal Research, 2012, 53, 385-389.	7.4	175
8	Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin ⟨i>⟨scp>⟨i>⟨scp>⟨i>a€acetyltransferase and ⟨i>⟨scp>⟨i>a€acetylserotonin methyltransferase activities. Journal of Pineal Research, 2014, 56, 189-195.	7.4	172
9	Senescence-Induced Serotonin Biosynthesis and Its Role in Delaying Senescence in Rice Leaves Â. Plant Physiology, 2009, 150, 1380-1393.	4.8	163
10	Molecular cloning of rice serotonin <i>N</i> à€acetyltransferase, the penultimate gene in plant melatonin biosynthesis. Journal of Pineal Research, 2013, 55, 7-13.	7.4	160
11	Enhanced production of melatonin by ectopic overexpression of human serotonin N-acetyltransferase plays a role in cold resistance in transgenic rice seedlings. Journal of Pineal Research, 2010, 49, no-no.	7.4	159
12	An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield. Journal of Pineal Research, 2014, 56, 408-414.	7.4	151
13	Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice. Journal of Pineal Research, 2011, 50, 304-309.	7.4	147
14	Melatonin is required for <scp>H</scp> ₂ <scp>O</scp> ₂ ―and <scp>NO</scp> â€mediated defense signaling through <scp>MAPKKK</scp> 3 and <scp>OXI</scp> 1 in <i><scp>A</scp>rabidopsis thaliana</i> . Journal of Pineal Research, 2017, 62, e12379.	7.4	147
15	Mitogenâ€activated protein kinase pathways are required for melatoninâ€mediated defense responses in plants. Journal of Pineal Research, 2016, 60, 327-335.	7.4	141
16	Caffeic acid <i><scp>O</scp></i> â€methyltransferase is involved in the synthesis of melatonin by methylating <i><scp>N</scp></i> â€acetylserotonin in <i><scp>A</scp>rabidopsis</i> . Journal of Pineal Research, 2014, 57, 219-227.	7.4	140
17	Cellular localization and kinetics of the rice melatonin biosynthetic enzymes <scp>SNAT</scp> and <scp>ASMT</scp> . Journal of Pineal Research, 2014, 56, 107-114.	7.4	135
18	Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment. Journal of Pineal Research, 2015, 58, 470-478.	7.4	132

#	Article	IF	Citations
19	Melatonin metabolism, signaling and possible roles in plants. Plant Journal, 2021, 105, 376-391.	5.7	127
20	Cloning of <i> <scp>A</scp>rabidopsis</i> serotonin <i> <scp>N</scp></i> â€acetyltransferase and its role with caffeic acid <i> <scp>O</scp></i> â€methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations. Journal of Pineal Research, 2014, 57, 418-426.	7.4	120
21	Overexpression of rice serotonin <i>N</i> à€acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. Journal of Pineal Research, 2017, 62, e12392.	7.4	119
22	Tryptamine 5â€hydroxylaseâ€deficient Sekiguchi rice induces synthesis of 5â€hydroxytryptophan and ⟨i⟩N⟨ i⟩â€acetyltryptamine but decreases melatonin biosynthesis during senescence process of detached leaves. Journal of Pineal Research, 2012, 52, 211-216.	7.4	111
23	Melatonin biosynthesis requires <i>N</i> -acetylserotonin methyltransferase activity of caffeic acid <i>O</i> -methyltransferase in rice. Journal of Experimental Botany, 2015, 66, 6917-6925.	4.8	106
24	Lightâ€regulated melatonin biosynthesis in rice during the senescence process in detached leaves. Journal of Pineal Research, 2012, 53, 107-111.	7.4	104
25	Functional analyses of three ASMT gene family members in rice plants. Journal of Pineal Research, 2013, 55, 409-415.	7.4	104
26	Cloning and functional characterization of the <i>Arabidopsis N</i> â€acetylserotonin <i>O</i> å€methyltransferase responsible for melatonin synthesis. Journal of Pineal Research, 2016, 60, 65-73.	7.4	104
27	Elevated production of melatonin in transgenic rice seeds expressing rice tryptophan decarboxylase. Journal of Pineal Research, 2014, 56, 275-282.	7.4	99
28	Porphyrin Biosynthesis Control under Water Stress: Sustained Porphyrin Status Correlates with Drought Tolerance in Transgenic Rice Â. Plant Physiology, 2011, 157, 1746-1764.	4.8	92
29	Low melatonin production by suppression of either serotonin $\langle i \rangle N \langle i \rangle \hat{a} \in \mathbf{e}$ cetyltransferase or $\langle i \rangle N \langle i \rangle \hat{a} \in \mathbf{e}$ cetylserotonin methyltransferase in rice causes seedling growth retardation with yield penalty, abiotic stress susceptibility, and enhanced coleoptile growth under anoxic conditions. Journal of Pineal Research, 2016, 60, 348-359.	7.4	91
30	HPLC Analysis of Serotonin, Tryptamine, Tyramine, and the Hydroxycinnamic Acid Amides of Serotonin and Tyramine in Food Vegetables. Journal of Medicinal Food, 2008, 11, 385-389.	1.5	88
31	Molecular cloning of melatonin 2â€hydroxylase responsible for 2â€hydroxymelatonin production in rice (<i><scp>O</scp>ryza sativa</i>). Journal of Pineal Research, 2015, 58, 343-351.	7.4	85
32	Cadmiumâ€induced melatonin synthesis in rice requires light, hydrogen peroxide, and nitric oxide: Key regulatory roles for tryptophan decarboxylase and caffeic acid <i>O</i> â€methyltransferase. Journal of Pineal Research, 2017, 63, e12441.	7.4	79
33	Molecular cloning and functional analysis of serotonin <i>N</i> â€ecetyltransferase from the cyanobacterium <i>Synechocystis</i> sp. <scp>PCC</scp> 6803. Journal of Pineal Research, 2013, 55, 371-376.	7.4	77
34	Predominance of 2â€hydroxymelatonin over melatonin in plants. Journal of Pineal Research, 2015, 59, 448-454.	7.4	74
35	2â€Hydroxymelatonin promotes the resistance of rice plant to multiple simultaneous abiotic stresses (combined cold and drought). Journal of Pineal Research, 2016, 61, 303-316.	7.4	73
36	Pre-Steady-State Study of Recombinant Sesquiterpene Cyclases. Biochemistry, 1997, 36, 8340-8348.	2.5	72

#	Article	IF	Citations
37	Biosynthesis and biotechnological production of serotonin derivatives. Applied Microbiology and Biotechnology, 2009, 83, 27-34.	3.6	69
38	Chloroplast overexpression of rice caffeic acid <i>O</i> â€methyltransferase increases melatonin production in chloroplasts via the 5â€methoxytryptamine pathway in transgenic rice plants. Journal of Pineal Research, 2017, 63, e12412.	7.4	69
39	Melatonin is involved in skotomorphogenesis by regulating brassinosteroid biosynthesis in rice plants. Journal of Pineal Research, 2018, 65, e12495.	7.4	69
40	Molecular cloning of melatonin 3â€hydroxylase and its production of cyclic 3â€hydroxymelatonin in rice (<i>Oryza sativa</i>). Journal of Pineal Research, 2016, 61, 470-478.	7.4	67
41	Cloning and characterization of the serotonin <i>N</i> à€acetyltransferaseâ€2 gene (<i>SNAT2</i>) in rice (<i>Oryza sativa</i>). Journal of Pineal Research, 2016, 61, 198-207.	7.4	64
42	Microarray analysis of genes differentially expressed in melatoninâ€rich transgenic rice expressing a sheep serotonin <i>N</i> >â€acetyltransferase. Journal of Pineal Research, 2013, 55, 357-363.	7.4	61
43	Cloning and Characterization of a Hydroxycinnamoyl-CoA:Tyramine N-(Hydroxycinnamoyl)Transferase Induced in Response to UV-C and Wounding from Capsicum annuum. Plant and Cell Physiology, 2001, 42, 475-481.	3.1	60
44	Production of Coumaroylserotonin and Feruloylserotonin in Transgenic Rice Expressing Pepper Hydroxycinnamoyl-Coenzyme A:Serotonin N-(Hydroxycinnamoyl)transferase. Plant Physiology, 2004, 135, 346-356.	4.8	59
45	Rice histone deacetylase 10 and Arabidopsis histone deacetylase 14 genes encode ⟨i>N⟨ i>â€acetylserotonin deacetylase, which catalyzes conversion of ⟨i>N⟨ i>â€acetylserotonin into serotonin, a reverse reaction for melatonin biosynthesis in plants. Journal of Pineal Research, 2018, 64. e12460.	7.4	57
46	Transcriptional suppression of tryptamine 5â€hydroxylase, a terminal serotonin biosynthetic gene, induces melatonin biosynthesis in rice (<i><scp>O</scp>ryza sativa </i> <scp>L</scp> .). Journal of Pineal Research, 2013, 55, 131-137.	7.4	56
47	Melatoninâ€deficient rice plants show a common semidwarf phenotype either dependent or independent of brassinosteroid biosynthesis. Journal of Pineal Research, 2019, 66, e12537.	7.4	54
48	Toxic tetrapyrrole accumulation in protoporphyrinogen IX oxidase-overexpressing transgenic rice plants. Plant Molecular Biology, 2008, 67, 535-546.	3.9	53
49	Kinetic analysis of purified recombinant rice <i>N</i> à€ecetylserotonin methyltransferase and peak melatonin production in etiolated rice shoots. Journal of Pineal Research, 2013, 54, 139-144.	7.4	53
50	Knockout of Arabidopsis Serotonin N-Acetyltransferase-2 Reduces Melatonin Levels and Delays Flowering. Biomolecules, 2019, 9, 712.	4.0	52
51	Transient induction of melatonin biosynthesis in rice (<i>Oryza sativa</i> L.) during the reproductive stage. Journal of Pineal Research, 2013, 55, 40-45.	7.4	51
52	Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts. Journal of Experimental Botany, 2015, 66, 709-717.	4.8	51
53	Melatonin induction and its role in high light stress tolerance in <i>Arabidopsis thaliana</i> . Journal of Pineal Research, 2018, 65, e12504.	7.4	51
54	Enzymatic features of serotonin biosynthetic enzymes and serotonin biosynthesis in plants. Plant Signaling and Behavior, 2008, 3, 389-390.	2.4	50

#	Article	IF	CITATIONS
55	Conversion of 5-Hydroxytryptophan into Serotonin by Tryptophan Decarboxylase in Plants, <i>Escherichia coli </i> , and Yeast. Bioscience, Biotechnology and Biochemistry, 2008, 72, 2456-2458.	1.3	49
56	Induction of serotonin biosynthesis is uncoupled from the coordinated induction of tryptophan biosynthesis in pepper fruits (Capsicum annuum) upon pathogen infection. Planta, 2009, 230, 1197-1206.	3.2	49
57	Production of serotonin by dual expression of tryptophan decarboxylase and tryptamine 5-hydroxylase in Escherichia coli. Applied Microbiology and Biotechnology, 2011, 89, 1387-1394.	3.6	49
58	Overexpression of a Defensin Enhances Resistance to a Fruit-Specific Anthracnose Fungus in Pepper. PLoS ONE, 2014, 9, e97936.	2.5	49
59	The phytomelatonin receptor (PMRT1) Arabidopsis Cand2 is not a bona fide G protein–coupled melatonin receptor. Melatonin Research, 2020, 3, 177-186.	1.1	43
60	Cloning and characterization of a serotonin <i>N</i> â€acetyltransferase from a gymnosperm, loblolly pine (<i>Pinus taeda</i>). Journal of Pineal Research, 2014, 57, 348-355.	7.4	40
61	2-Hydroxymelatonin confers tolerance against combined cold and drought stress in tobacco, tomato, and cucumber as a potent anti-stress compound in the evolution of land plants. Melatonin Research, 2019, 2, 35-46.	1.1	39
62	Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds. Genes and Genomics, 2011, 33, 685-692.	1.4	38
63	Functional Analysis of the Amine Substrate Specificity Domain of Pepper Tyramine and Serotonin N-Hydroxycinnamoyltransferases. Plant Physiology, 2006, 140, 704-715.	4.8	37
64	Increased expression of Fe-chelatase leads to increased metabolic flux into heme and confers protection against photodynamically induced oxidative stress. Plant Molecular Biology, 2014, 86, 271-287.	3.9	37
65	Cadmium Disrupts Subcellular Organelles, Including Chloroplasts, Resulting in Melatonin Induction in Plants. Molecules, 2017, 22, 1791.	3.8	36
66	Melatonin production in Escherichia coli by dual expression of serotonin N-acetyltransferase and caffeic acid O-methyltransferase. Applied Microbiology and Biotechnology, 2016, 100, 6683-6691.	3.6	34
67	Methanol is an endogenous elicitor molecule for the synthesis of tryptophan and tryptophanâ€derived secondary metabolites upon senescence of detached rice leaves. Plant Journal, 2011, 66, 247-257.	5.7	33
68	Melatonin Deficiency Confers Tolerance to Multiple Abiotic Stresses in Rice via Decreased Brassinosteroid Levels. International Journal of Molecular Sciences, 2019, 20, 5173.	4.1	32
69	Herbicidal and antioxidant responses of transgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase. Plant Physiology and Biochemistry, 2005, 43, 423-430.	5.8	30
70	A rice chloroplast transit peptide sequence does not alter the cytoplasmic localization of sheep serotonin $\langle i \rangle N < i \rangle$ and $ i \rangle$ are expressed in transgenic rice plants. Journal of Pineal Research, 2014, 57, 147-154.	7.4	30
71	Flavonoids inhibit both rice and sheep serotonin <i>N</i> â€acetyltransferases and reduce melatonin levels in plants. Journal of Pineal Research, 2018, 65, e12512.	7.4	30
72	Suppression of Melatonin 2-Hydroxylase Increases Melatonin Production Leading to the Enhanced Abiotic Stress Tolerance against Cadmium, Senescence, Salt, and Tunicamycin in Rice Plants. Biomolecules, 2019, 9, 589.	4.0	30

#	Article	IF	CITATIONS
73	Enriched production of N-hydroxycinnamic acid amides and biogenic amines in pepper (Capsicum) Tj ETQq1	l 0.784314 rgE	3T ₂ /Overlock
74	Chloroplastic and cytoplasmic overexpression of sheep serotonin <i>N</i> à€acetyltransferase in transgenic rice plants is associated with low melatonin production despite high enzyme activity. Journal of Pineal Research, 2015, 58, 461-469.	7.4	29
75	Melatonin plays a pivotal role in conferring tolerance against endoplasmic reticulum stress via mitogen-activated protein kinases and bZIP60 in Arabidopsis thaliana. Melatonin Research, 2018, 1, 94-108.	1.1	29
76	Resistance pattern and antioxidant enzyme profiles of protoporphyrinogen oxidase (PROTOX) inhibitor-resistant transgenic rice. Pesticide Biochemistry and Physiology, 2008, 91, 53-65.	3.6	28
77	Melatonin Regulates Chloroplast Protein Quality Control via a Mitogen-Activated Protein Kinase Signaling Pathway. Antioxidants, 2021, 10, 511.	5.1	28
78	Cytoprotective activities of hydroxycinnamic acid amides of serotonin against oxidative stress-induced damage in HepG2 and HaCaT cells. Fìtoterapìâ, 2010, 81, 1134-1141.	2.2	23
79	Simultaneous Suppression of Two Distinct Serotonin N-Acetyltransferase Isogenes by RNA Interference Leads to Severe Decreases in Melatonin and Accelerated Seed Deterioration in Rice. Biomolecules, 2020, 10, 141.	4.0	22
80	2-Hydroxymelatonin, Rather Than Melatonin, Is Responsible for RBOH-Dependent Reactive Oxygen Species Production Leading to Premature Senescence in Plants. Antioxidants, 2021, 10, 1728.	5.1	22
81	Partial Characterization of Farnesyl and Geranylgeranyl Diphosphatases Induced in Rice Seedlings by UV-C Irradiation. Plant and Cell Physiology, 2001, 42, 864-867.	3.1	21
82	Enhanced neutraceutical serotonin derivatives of rice seed by hydroxycinnamoyl-CoA:serotonin N-(hydroxycinnamoyl)transferase. Plant Science, 2005, 168, 783-788.	3.6	20
83	Gene flow from herbicide-tolerant GM rice and the heterosis of GM rice-weed F2 progeny. Planta, 2011, 233, 807-815.	3.2	20
84	Effects of Light Quality and Phytochrome Form on Melatonin Biosynthesis in Rice. Biomolecules, 2020, 10, 523.	4.0	20
85	Expression of serotonin derivative synthetic genes on a single self-processing polypeptide and the production of serotonin derivatives in microbes. Applied Microbiology and Biotechnology, 2008, 81, 43-49.	3.6	19
86	2-Hydroxymelatonin, a Predominant Hydroxylated Melatonin Metabolite in Plants, Shows Antitumor Activity against Human Colorectal Cancer Cells. Molecules, 2017, 22, 453.	3.8	17
87	Cloning of a Sesquiterpene Cyclase and Its Functional Expression by Domain Swapping Strategy. Molecules and Cells, 2000, 10, 220-225.	2.6	16
88	Cyclic 3-hydroxymelatonin exhibits diurnal rhythm and cyclic 3-hydroxymelatonin overproduction increases secondary tillers in rice by upregulating MOC1 expression. Melatonin Research, 2019, 2, 120-138.	1.1	16
89	Phytomelatonin as a signaling molecule for protein quality control via chaperone, autophagy, and ubiquitin–proteasome systems in plants. Journal of Experimental Botany, 2022, 73, 5863-5873.	4.8	16
90	Use of Myxococcus xanthus protoporphyrinogen oxidase as a selectable marker for transformation of rice. Pesticide Biochemistry and Physiology, 2007, 88, 31-35.	3.6	15

#	Article	IF	CITATIONS
91	Two-year field study shows little evidence that PPO-transgenic rice affects the structure of soil microbial communities. Biology and Fertility of Soils, 2012, 48, 453-461.	4.3	15
92	Pathogen resistance of transgenic rice plants expressing mitogen-activated protein kinase 1, MK1, from Capsicum annuum. Molecules and Cells, 2004, 17, 81-5.	2.6	15
93	Responses of MxPPO overexpressing transgenic tall fescue plants to two diphenyl-ether herbicides, oxyfluorfen and acifluorfen. Acta Physiologiae Plantarum, 2008, 30, 745-754.	2.1	14
94	Production of phenylpropanoid amides in recombinant Escherichia coli. Metabolic Engineering, 2009, 11, 64-68.	7.0	14
95	Tyramine accumulation in rice cells caused a dwarf phenotype via reduced cell division. Planta, 2011, 233, 251-260.	3.2	14
96	Enhanced synthesis of feruloyltyramine and 4-coumaroyltyramine is associated with tyramine availability in transgenic rice expressing pepper tyramine N-hydroxycinnamoyltransferase. Plant Science, 2007, 172, 57-63.	3.6	13
97	Endosperm-specific expression of tyramine N-hydroxycinnamoyltransferase and tyrosine decarboxylase from a single self-processing polypeptide produces high levels of tyramine derivatives in rice seeds. Biotechnology Letters, 2009, 31, 911-915.	2.2	13
98	Rice P450 reductases differentially affect P450-mediated metabolism in bacterial expression systems. Bioprocess and Biosystems Engineering, 2013, 36, 325-331.	3.4	13
99	2-Hydroxymelatonin Promotes Seed Germination by Increasing Reactive Oxygen Species Production and Gibberellin Synthesis in Arabidopsis thaliana. Antioxidants, 2022, 11, 737.	5.1	13
100	Modifying Myxococcus xanthus protoporphyrinogen oxidase to plant codon usage and high level of oxyfluorfen resistance in transgenic rice. Pesticide Biochemistry and Physiology, 2006, 86, 186-194.	3.6	12
101	Ectopic expression of serotonin N-hydroxycinnamoyltransferase and differential production of phenylpropanoid amides in transgenic tomato tissues. Scientia Horticulturae, 2009, 120, 504-510.	3.6	12
102	Enhanced octopamine synthesis through the ectopic expression of tyrosine decarboxylase in rice plants. Plant Science, 2009, 176, 46-50.	3.6	12
103	Induced synthesis of caffeoylserotonin in pepper fruits upon infection by the anthracnose fungus, Colletotrichum gloeosporioides. Scientia Horticulturae, 2010, 124, 290-293.	3.6	12
104	Production of ketocarotenoids in transgenic carrot plants with an enhanced level of \hat{l}^2 -carotene. Plant Biotechnology Reports, 2012, 6, 133-140.	1.5	12
105	Functional Characterization of Serotonin N-Acetyltransferase in Archaeon Thermoplasma volcanium. Antioxidants, 2022, 11, 596.	5.1	12
106	Exogenous Gibberellin Treatment Enhances Melatonin Synthesis for Melatonin-Enriched Rice Production. Biomolecules, 2022, 12, 198.	4.0	11
107	Developmentally Regulated Sesquiterpene Production Confers Resistance to Colletotrichum gloeosporioides in Ripe Pepper Fruits. PLoS ONE, 2014, 9, e109453.	2.5	10
108	Suppression of Rice Cryptochrome 1b Decreases Both Melatonin and Expression of Brassinosteroid Biosynthetic Genes Resulting in Salt Tolerance. Molecules, 2021, 26, 1075.	3.8	10

#	Article	IF	CITATIONS
109	Rice N-acetylserotonin deacetylase regulates melatonin levels in transgenic rice. Melatonin Research, 2020, 3, 32-42.	1.1	10
110	Either Soluble or Plastidic Expression of Recombinant Protoporphyrinogen Oxidase Modulates Tetrapyrrole Biosynthesis and Photosynthetic Efficiency in Transgenic Rice. Bioscience, Biotechnology and Biochemistry, 2003, 67, 1472-1478.	1.3	8
111	Overexpression of Rice Ferrochelatase I and II Leads to Increased Susceptibility to Oxyfluorfen Herbicide in Transgenic Rice. Journal of Plant Biology, 2010, 53, 291-296.	2.1	8
112	Protoporphyrinogen Oxidase–Overexpressing Transgenic Rice is Resistant to Drought Stress. Crop Science, 2013, 53, 1076-1085.	1.8	8
113	Expression of recombinant protoporphyrinogen oxidase influences growth and morphological characteristics in transgenic rice. Plant Growth Regulation, 2004, 42, 283-288.	3.4	7
114	Endosperm-Specific Expression of Serotonin N-Hydroxycinnamoyltransferase in Rice. Plant Foods for Human Nutrition, 2008, 63, 53-57.	3.2	7
115	Functional characterization of tobacco (Nicotiana benthamiana) serotonin N-acetyltransferases (NbSNAT1 and NbSNAT2). Melatonin Research, 2021, 4, 507-521.	1.1	7
116	The Antioxidant Cyclic 3-Hydroxymelatonin Promotes the Growth and Flowering of Arabidopsis thaliana. Antioxidants, 2022, 11, 1157.	5.1	7
117	Strategies to generate melatonin-enriched transgenic rice to respond to the adverse effects on rice production potentially caused by global warming. Melatonin Research, 2021, 4, 501-506.	1.1	6
118	Molecular Regulation of Antioxidant Melatonin Biosynthesis by Brassinosteroid Acting as an Endogenous Elicitor of Melatonin Induction in Rice Seedlings. Antioxidants, 2022, 11, 918.	5.1	6
119	The characterization of transgenic rice plants expressing a pepper 5- aristolochene synthase, the first committed step enzyme for capsidiol synthesis in isoprenoid pathway. Plant Science, 2004, 166, 881-887.	3.6	5
120	Production of plant-specific tyramine derivatives by dual expression of tyramine N-hydroxycinnamoyltransferase and 4-coumarate:coenzyme A ligase in Escherichia coli. Biotechnology Letters, 2009, 31, 1469-1475.	2.2	5
121	Induced tyramine overproduction in transgenic rice plants expressing a rice tyrosine decarboxylase under the control of methanol-inducible rice tryptophan decarboxylase promoter. Bioprocess and Biosystems Engineering, 2012, 35, 205-210.	3.4	4
122	Fitness cost and competitive ability of transgenic herbicide-tolerant rice expressing a protoporphyrinogen oxidase gene. Journal of Ecology and Environment, 2013, 36, 39-47.	1.6	4
123	Ectopic expression of MAP kinase inhibits germination and seedling growth in transgenic rice. Plant Growth Regulation, 2005, 45, 251-257.	3.4	3
124	Tryptophan Boost Caused by Senescence Occurred Independently of Cytoplasmic Glutamine Synthetase. Bioscience, Biotechnology and Biochemistry, 2010, 74, 2352-2354.	1.3	3
125	Methanol elicits the biosynthesis of 4-coumaroylserotonin and feruloylserotonin in rice seedlings. Plant Signaling and Behavior, 2011, 6, 881-883.	2.4	3
126	Inhibition of Rice Serotonin N-Acetyltransferases by MG149 Decreased Melatonin Synthesis in Rice Seedlings. Biomolecules, 2021, 11, 658.	4.0	2

#	Article	lF	CITATIONS
127	Phenotype Comparison between Herbicide Tolerant Transgenic Rice and Weedy Rice. Weed & Turfgrass Science, 2013, 2, 15-22.	0.1	1
128	Arthropod Diversity and Community Structure in Fields of Non-geneticall Modified (GM) and Herbicide-tolerant GM Rice. Korean Journal of Applied Entomology, 2015, , 335-343.	0.3	1