Duc M Duong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/421322/publications.pdf

Version: 2024-02-01

144 papers 11,719 citations

51
h-index

97 g-index

176 all docs

176 docs citations

176 times ranked

14717 citing authors

#	Article	IF	Citations
1	Large-scale deep multi-layer analysis of Alzheimer's disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nature Neuroscience, 2022, 25, 213-225.	14.8	202
2	A phase II study repurposing atomoxetine for neuroprotection in mild cognitive impairment. Brain, 2022, 145, 1924-1938.	7.6	39
3	Quantitative proteomic analysis of the lysine acetylome reveals diverse SIRT2 substrates. Scientific Reports, 2022, 12, 3822.	3.3	5
4	Genetic Evidence Supporting a Causal Role of Depression in Alzheimer's Disease. Biological Psychiatry, 2022, 92, 25-33.	1.3	18
5	APP and DYRK1A regulate axonal and synaptic vesicle protein networks and mediate Alzheimer's pathology in trisomy 21 neurons. Molecular Psychiatry, 2022, 27, 1970-1989.	7.9	14
6	Integrating human brain proteomes with genome-wide association data implicates novel proteins in post-traumatic stress disorder. Molecular Psychiatry, 2022, 27, 3075-3084.	7.9	13
7	Cell type-specific biotin labeling in vivo resolves regional neuronal and astrocyte proteomic differences in mouse brain. Nature Communications, 2022, 13, .	12.8	32
8	Signatures of glial activity can be detected in the CSF proteome. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	12
9	Mass-Spectrometry-Based Near-Complete Draft of the <i>Saccharomyces cerevisiae </i> Proteome. Journal of Proteome Research, 2021, 20, 1328-1340.	3.7	13
10	Broad Kinase Inhibition Mitigates Early Neuronal Dysfunction in Tauopathy. International Journal of Molecular Sciences, 2021, 22, 1186.	4.1	6
11	TBK1 interacts with tau and enhances neurodegeneration in tauopathy. Journal of Biological Chemistry, 2021, 296, 100760.	3.4	14
12	Integrative functional genomic analysis of intron retention in human and mouse brain with Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, 984-1004.	0.8	25
13	Genetic control of the human brain proteome. American Journal of Human Genetics, 2021, 108, 400-410.	6.2	52
14	Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nature Neuroscience, 2021, 24, 810-817.	14.8	85
15	Amphiphysin I cleavage by asparagine endopeptidase leads to tau hyperphosphorylation and synaptic dysfunction. ELife, 2021, 10, .	6.0	9
16	A proteomic network approach resolves stage-specific molecular phenotypes in chronic traumatic encephalopathy. Molecular Neurodegeneration, 2021, 16, 40.	10.8	4
17	Heterogeneous Expression of Nuclear Encoded Mitochondrial Genes Distinguishes Inhibitory and Excitatory Neurons. ENeuro, 2021, 8, ENEURO.0232-21.2021.	1.9	13
18	Mitochondrial Proteostasis Requires Genes Encoded in a Neurodevelopmental Syndrome Locus. Journal of Neuroscience, 2021, 41, 6596-6616.	3.6	18

#	Article	IF	Citations
19	Regulation of the endocytosis and prion-chaperoning machineries by yeast E3 ubiquitin ligase Rsp5 as revealed by orthogonal ubiquitin transfer. Cell Chemical Biology, 2021, 28, 1283-1297.e8.	5.2	9
20	Loss of the mitochondrial phosphate carrier SLC25A3 induces remodeling of the cardiac mitochondrial protein acylome. American Journal of Physiology - Cell Physiology, 2021, 321, C519-C534.	4.6	8
21	Stem cell-derived neurons reflect features of protein networks, neuropathology, and cognitive outcome of their aged human donors. Neuron, 2021, 109, 3402-3420.e9.	8.1	7 5
22	Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer's disease pathogenesis. Nature Genetics, 2021, 53, 143-146.	21.4	158
23	Extracellular calcium alters calcium-sensing receptor network integrating intracellular calcium-signaling and related key pathway. Scientific Reports, 2021, 11, 20576.	3.3	8
24	Phosphorylation regulates arginine-rich RNA-binding protein solubility and oligomerization. Journal of Biological Chemistry, 2021, 297, 101306.	3.4	9
25	Orthogonal ubiquitin transfer reveals human papillomavirus E6 downregulates nuclear transport to disarm interferonâ€Î³ dependent apoptosis of cervical cancer cells. FASEB Journal, 2021, 35, e21986.	0.5	6
26	Atlas of RNA editing events affecting protein expression in aged and Alzheimer's disease human brain tissue. Nature Communications, 2021, 12, 7035.	12.8	19
27	Largeâ€scale deep multiâ€layer analysis of Alzheimer's disease brain reveals strong proteomic diseaseâ€related changes not observed at the RNA level. Alzheimer's and Dementia, 2021, 17, e055041.	0.8	1
28	Depression contributes to Alzheimer's disease through shared genetic risk Alzheimer's and Dementia, 2021, 17 Suppl 3, e053251.	0.8	0
29	Quantitative Proteomics Reveal an Altered Pattern of Protein Expression in Brain Tissue from Mice Lacking GPR37 and GPR37L1. Journal of Proteome Research, 2020, 19, 744-755.	3.7	8
30	Integrated analysis of the aging brain transcriptome and proteome in tauopathy. Molecular Neurodegeneration, 2020, 15, 56.	10.8	22
31	Global quantitative analysis of the human brain proteome and phosphoproteome in Alzheimer's disease. Scientific Data, 2020, 7, 315.	5.3	74
32	Integrated proteomics reveals brain-based cerebrospinal fluid biomarkers in asymptomatic and symptomatic Alzheimer's disease. Science Advances, 2020, 6, .	10.3	186
33	Network analysis of the progranulin-deficient mouse brain proteome reveals pathogenic mechanisms shared in human frontotemporal dementia caused by GRN mutations. Acta Neuropathologica Communications, 2020, 8, 163.	5.2	49
34	Multiscale causal networks identify VGF as a key regulator of Alzheimer's disease. Nature Communications, 2020, 11, 3942.	12.8	94
35	A consensus proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Alzheimer's and Dementia, 2020, 16, e039504.	0.8	0
36	Proteomics identifies CSF biomarker panels reflective of pathological networks in the Alzheimer's disease brain. Alzheimer's and Dementia, 2020, 16, e042227.	0.8	0

#	Article	IF	CITATIONS
37	Identifying novel causal genes and proteins in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e043523.	0.8	1
38	Integrating human brain proteomes and genomeâ€wide association results implicates new genes in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e043865.	0.8	1
39	Hallmarks of lateâ€onset Alzheimer's disease in a humanized mouse model. Alzheimer's and Dementia, 2020, 16, e045162.	0.8	0
40	Novel proteomic molecular signatures of brain endothelial cells and microglia in the aging mouse brain. Alzheimer's and Dementia, 2020, 16, e047549.	0.8	0
41	Shared proteomic effects of cerebral atherosclerosis and Alzheimer's disease on the human brain. Nature Neuroscience, 2020, 23, 696-700.	14.8	86
42	Flow-cytometric microglial sorting coupled with quantitative proteomics identifies moesin as a highly-abundant microglial protein with relevance to Alzheimerâ \in [™] s disease. Molecular Neurodegeneration, 2020, 15, 28.	10.8	37
43	EZH2 has a non-catalytic and PRC2-independent role in stabilizing DDB2 to promote nucleotide excision repair. Oncogene, 2020, 39, 4798-4813.	5.9	29
44	Targeted mass spectrometry to quantify brain-derived cerebrospinal fluid biomarkers in Alzheimer's disease. Clinical Proteomics, 2020, 17, 19.	2.1	53
45	Cortical Proteins Associated With Cognitive Resilience in Community-Dwelling Older Persons. JAMA Psychiatry, 2020, 77, 1172.	11.0	70
46	Identification of Conserved Proteomic Networks in Neurodegenerative Dementia. Cell Reports, 2020, 31, 107807.	6.4	49
47	Molecular Signatures of Neuroinflammation Induced by $\hat{l}\pm Synuclein$ Aggregates in Microglial Cells. Frontiers in Immunology, 2020, 11, 33.	4.8	50
48	Middle-Down Proteomics Reveals Dense Sites of Methylation and Phosphorylation in Arginine-Rich RNA-Binding Proteins. Journal of Proteome Research, 2020, 19, 1574-1591.	3.7	10
49	Posttranslational Modifications Mediate the Structural Diversity of Tauopathy Strains. Cell, 2020, 180, 633-644.e12.	28.9	300
50	Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nature Medicine, 2020, 26, 769-780.	30.7	547
51	Proteomics Links Ubiquitin Chain Topology Change to Transcription Factor Activation. Molecular Cell, 2019, 76, 126-137.e7.	9.7	24
52	Acetylation regulates ribonucleotide reductase activity and cancer cell growth. Nature Communications, 2019, 10, 3213.	12.8	49
53	Ionizing Radiation induction of cholesterol biosynthesis in Lung tissue. Scientific Reports, 2019, 9, 12546.	3.3	14
54	Network Analysis of a Membrane-Enriched Brain Proteome across Stages of Alzheimer's Disease. Proteomes, 2019, 7, 30.	3.5	18

#	Article	IF	Citations
55	Specific Proteomes of Hippocampal Regions CA2 and CA1 Reveal Proteins Linked to the Unique Physiology of Area CA2. Journal of Proteome Research, 2019, 18, 2571-2584.	3.7	18
56	Trimethylation of Elongation Factor-Tu by the Dual Thermoregulated Methyltransferase EftM Does Not Impact Its Canonical Function in Translation. Scientific Reports, 2019, 9, 3553.	3.3	5
57	Large-scale proteomic analysis of human brain identifies proteins associated with cognitive trajectory in advanced age. Nature Communications, 2019, 10, 1619.	12.8	144
58	Mass Spectrometry-Based Quantification of Tau in Human Cerebrospinal Fluid Using a Complementary Tryptic Peptide Standard. Journal of Proteome Research, 2019, 18, 2422-2432.	3.7	11
59	Hectd3 promotes pathogenic Th17 lineage through Stat3 activation and Malt1 signaling in neuroinflammation. Nature Communications, 2019, 10, 701.	12.8	57
60	Interactome Analysis Reveals Regulator of G Protein Signaling 14 (RGS14) is a Novel Calcium/Calmodulin (Ca ²⁺ /CaM) and CaM Kinase II (CaMKII) Binding Partner. Journal of Proteome Research, 2018, 17, 1700-1711.	3.7	21
61	Identifying the substrate proteins of U-box E3s E4B and CHIP by orthogonal ubiquitin transfer. Science Advances, 2018, 4, e1701393.	10.3	39
62	TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nature Neuroscience, 2018, 21, 228-239.	14.8	404
63	Characterization of Detergent Insoluble Proteome in Chronic Traumatic Encephalopathy. Journal of Neuropathology and Experimental Neurology, 2018, 77, 40-49.	1.7	19
64	Global quantitative analysis of the human brain proteome in Alzheimer's and Parkinson's Disease. Scientific Data, 2018, 5, 180036.	5.3	179
65	A proteomic network approach across the <scp>ALS</scp> ― <scp>FTD</scp> disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain. EMBO Molecular Medicine, 2018, 10, 48-62.	6.9	142
66	Discovery of tear biomarkers in children with chronic non-infectious anterior uveitis: a pilot study. Journal of Ophthalmic Inflammation and Infection, 2018, 8, 17.	2.2	34
67	Effects of APOE Genotype on Brain Proteomic Network and Cell Type Changes in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2018, 11, 454.	2.9	55
68	Deep proteomic network analysis of Alzheimer's disease brain reveals alterations in RNA binding proteins and RNA splicing associated with disease. Molecular Neurodegeneration, 2018, 13, 52.	10.8	178
69	Quantitative Analysis of the Brain Ubiquitylome in Alzheimer's Disease. Proteomics, 2018, 18, e1800108.	2.2	50
70	RNA-binding proteins with basic-acidic dipeptide (BAD) domains self-assemble and aggregate in Alzheimer's disease. Journal of Biological Chemistry, 2018, 293, 11047-11066.	3.4	66
71	Quantitative proteomics of acutely-isolated mouse microglia identifies novel immune Alzheimer's disease-related proteins. Molecular Neurodegeneration, 2018, 13, 34.	10.8	100
72	Differential Phagocytic Properties of CD45low Microglia and CD45high Brain Mononuclear Phagocytes—Activation and Age-Related Effects. Frontiers in Immunology, 2018, 9, 405.	4.8	102

#	Article	IF	CITATIONS
73	Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 24.	10.8	267
74	The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer's disease. Scientific Data, 2018, 5, 180185.	5. 3	320
75	Orthogonal ubiquitin transfer identifies ubiquitination substrates under differential control by the two ubiquitin activating enzymes. Nature Communications, 2017, 8, 14286.	12.8	35
76	Biochemical characterization of purified mammalian ARL13B protein indicates that it is an atypical GTPase and ARL3 guanine nucleotide exchange factor (GEF). Journal of Biological Chemistry, 2017, 292, 11091-11108.	3.4	51
77	A Multi-network Approach Identifies Protein-Specific Co-expression in Asymptomatic and Symptomatic Alzheimer's Disease. Cell Systems, 2017, 4, 60-72.e4.	6.2	381
78	Integrating Next-Generation Genomic Sequencing and Mass Spectrometry To Estimate Allele-Specific Protein Abundance in Human Brain. Journal of Proteome Research, 2017, 16, 3336-3347.	3.7	48
79	5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins. Scientific Reports, 2017, 7, 15593.	3.3	25
80	Mice lacking Gpr37 exhibit decreased expression of the myelin-associated glycoprotein MAG and increased susceptibility to demyelination. Neuroscience, 2017, 358, 49-57.	2.3	32
81	A systems pharmacology-based approach to identify novel Kv1.3 channel-dependent mechanisms in microglial activation. Journal of Neuroinflammation, 2017, 14, 128.	7.2	58
82	Asparagine endopeptidase cleaves α-synuclein and mediates pathologic activities in Parkinson's disease. Nature Structural and Molecular Biology, 2017, 24, 632-642.	8.2	159
83	Identifying the ubiquitination targets of E6AP by orthogonal ubiquitin transfer. Nature Communications, 2017, 8, 2232.	12.8	30
84	Multiscale network modeling of oligodendrocytes reveals molecular components of myelin dysregulation in Alzheimer's disease. Molecular Neurodegeneration, 2017, 12, 82.	10.8	100
85	Osteopontin Is a Blood Biomarker for Microglial Activation and Brain Injury in Experimental Hypoxic-Ischemic Encephalopathy. ENeuro, 2017, 4, ENEURO.0253-16.2016.	1.9	28
86	Native low density lipoprotein promotes lipid raft formation in macrophages. Molecular Medicine Reports, 2016, 13, 2087-2093.	2.4	9
87	GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nature Communications, 2016, 7, 11795.	12.8	24
88	Pseudomonas aeruginosa EftM Is a Thermoregulated Methyltransferase. Journal of Biological Chemistry, 2016, 291, 3280-3290.	3.4	22
89	Changes in the detergent-insoluble brain proteome linked to amyloid and tau in Alzheimer's Disease progression. Proteomics, 2016, 16, 3042-3053.	2.2	69
90	Evolutionarily Conserved Polyadenosine RNA Binding Protein Nab2 Cooperates with Splicing Machinery To Regulate the Fate of Pre-mRNA. Molecular and Cellular Biology, 2016, 36, 2697-2714.	2.3	50

#	Article	IF	Citations
91	An O2-sensing stressosome from a Gram-negative bacterium. Nature Communications, 2016, 7, 12381.	12.8	25
92	ATRIP Deacetylation by SIRT2 Drives ATR Checkpoint Activation by Promoting Binding to RPA-ssDNA. Cell Reports, 2016, 14, 1435-1447.	6.4	54
93	Cellular O-Glycome Reporter/Amplification to explore O-glycans of living cells. Nature Methods, 2016, 13, 81-86.	19.0	81
94	Consequences of impaired purine recycling on the proteome in a cellular model of Lesch–Nyhan disease. Molecular Genetics and Metabolism, 2015, 114, 570-579.	1.1	10
95	Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer's disease. Nature Communications, 2015, 6, 8762.	12.8	210
96	O4-12-02: Protein co-expression network analysis in Alzheimer's disease., 2015, 11, P299-P299.		0
97	O4-12-03: Brain phosphoproteome network analysis discriminates Alzheimer's disease from other tauopathies., 2015, 11, P300-P300.		0
98	Stress Induces p38 MAPK-Mediated Phosphorylation and Inhibition of Drosha-Dependent Cell Survival. Molecular Cell, 2015, 57, 721-734.	9.7	72
99	Glutamate Dehydrogenase 1 Signals through Antioxidant Glutathione Peroxidase 1 to Regulate Redox Homeostasis and Tumor Growth. Cancer Cell, 2015, 27, 257-270.	16.8	269
100	Quantitative phosphoproteomics of Alzheimer's disease reveals crossâ€ŧalk between kinases and small heat shock proteins. Proteomics, 2015, 15, 508-519.	2.2	70
101	Tau phosphosignatures discriminate Alzheimer Disease from other tauopathies. FASEB Journal, 2015, 29,	0.5	0
102	Aggregation Properties of the Small Nuclear Ribonucleoprotein U1-70K in Alzheimer Disease. Journal of Biological Chemistry, 2014, 289, 35296-35313.	3.4	42
103	Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer's disease. Nature Medicine, 2014, 20, 1254-1262.	30.7	367
104	U1 small nuclear ribonucleoproteins (snRNPs) aggregate in Alzheimer's disease due to autosomal dominant genetic mutations and trisomy 21. Molecular Neurodegeneration, 2014, 9, 15.	10.8	47
105	Tissue-Type Plasminogen Activator Mediates Neuronal Detection and Adaptation to Metabolic Stress. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1761-1769.	4.3	22
106	Quantitative Proteomics Reveals Significant Changes in Cell Shape and an Energy Shift after IPTG Induction via an Optimized SILAC Approach for <i>Escherichia coli</i> . Journal of Proteome Research, 2013, 12, 5978-5988.	3.7	32
107	U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16562-16567.	7.1	268
108	Pharmacologic Inhibition of ROCK2 Suppresses Amyloid-β Production in an Alzheimer's Disease Mouse Model. Journal of Neuroscience, 2013, 33, 19086-19098.	3.6	118

#	Article	IF	CITATIONS
109	Proteomic analysis of postsynaptic density in Alzheimer's Disease. Clinica Chimica Acta, 2013, 420, 62-68.	1.1	42
110	Expression, purification and proteomic analysis of recombinant histone <scp>H</scp> 4 acetylated at lysine 16. Proteomics, 2013, 13, 1687-1691.	2.2	6
111	Neuron Enriched Nuclear Proteome Isolated from Human Brain. Journal of Proteome Research, 2013, 12, 3193-3206.	3.7	60
112	Systematic research on the pretreatment of peptides for quantitative proteomics using a <scp>C</scp> ₁₈ microcolumn. Proteomics, 2013, 13, 2229-2237.	2.2	30
113	Selective Targeting of the Cysteine Proteome by Thioredoxin and Glutathione Redox Systems. Molecular and Cellular Proteomics, 2013, 12, 3285-3296.	3.8	81
114	SIRT2 directs the replication stress response through CDK9 deacetylation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13546-13551.	7.1	87
115	Abnormal Gephyrin Immunoreactivity Associated With Alzheimer Disease Pathologic Changes. Journal of Neuropathology and Experimental Neurology, 2013, 72, 1009-1015.	1.7	29
116	Exploring the potential of the platelet membrane proteome as a source of peripheral biomarkers for Alzheimer's disease. Alzheimer's Research and Therapy, 2013, 5, 32.	6.2	32
117	Mycobacterium tuberculosis Biology Revealed by Proteome Profiling and Integration of Multi-omics Data—Proteomics Insight into M. tuberculosis Systems Biology. Current Proteomics, 2013, 10, 261-268.	0.3	2
118	Protein Fold Classification with Backbone Torsional Characters Using Multi- Class Linear Discriminant Analysis. Journal of Proteomics and Bioinformatics, 2013, 06, 196-209.	0.4	42
119	Quantitative Analysis of the Detergent-Insoluble Brain Proteome in Frontotemporal Lobar Degeneration Using SILAC Internal Standards. Journal of Proteome Research, 2012, 11, 2721-2738.	3.7	61
120	Stable Isotope Labeling with Amino Acids in <i>Drosophila</i> for Quantifying Proteins and Modifications. Journal of Proteome Research, 2012, 11, 4403-4412.	3.7	34
121	Tissue-Type Plasminogen Activator Regulates the Neuronal Uptake of Glucose in the Ischemic Brain. Journal of Neuroscience, 2012, 32, 9848-9858.	3.6	79
122	Asparaginyl endopeptidase cleaves TDPâ€43 in brain. Proteomics, 2012, 12, 2455-2463.	2.2	52
123	Protein Profiling of Active Cysteine Cathepsins in Living Cells Using an Activity-Based Probe Containing a Cell-Penetrating Peptide. Journal of Proteome Research, 2012, 11, 5763-5772.	3.7	11
124	Analysis of a membraneâ€enriched proteome from postmortem human brain tissue in <scp>A</scp> lzheimer's disease. Proteomics - Clinical Applications, 2012, 6, 201-211.	1.6	72
125	Coaggregation of RNA-Binding Proteins in a Model of TDP-43 Proteinopathy with Selective RGG Motif Methylation and a Role for RRM1 Ubiquitination. PLoS ONE, 2012, 7, e38658.	2.5	98
126	Proteomic Analysis of Hippocampal Dentate Granule Cells in Frontotemporal Lobar Degeneration: Application of Laser Capture Technology. Frontiers in Neurology, 2011, 2, 24.	2.4	18

#	Article	IF	CITATION
127	Aberrant septin 11 is associated with sporadic frontotemporal lobar degeneration. Molecular Neurodegeneration, $2011, 6, 82$.	10.8	17
128	Polyubiquitin Linkage Profiles in Three Models of Proteolytic Stress Suggest the Etiology of Alzheimer Disease. Journal of Biological Chemistry, 2011, 286, 10457-10465.	3.4	151
129	Multiplex SILAC Analysis of a Cellular TDP-43 Proteinopathy Model Reveals Protein Inclusions Associated with SUMOylation and Diverse Polyubiquitin Chains. Molecular and Cellular Proteomics, 2010, 9, 705-718.	3.8	92
130	Phosphoproteomic Analysis Reveals Site-Specific Changes in GFAP and NDRG2 Phosphorylation in Frontotemporal Lobar Degeneration. Journal of Proteome Research, 2010, 9, 6368-6379.	3.7	71
131	Galectin-3 Is a Candidate Biomarker for Amyotrophic Lateral Sclerosis: Discovery by a Proteomics Approach. Journal of Proteome Research, 2010, 9, 5133-5141.	3.7	88
132	Identification and Characterization of Neuronal Mitogen-activated Protein Kinase Substrates Using a Specific Phosphomotif Antibody. Molecular and Cellular Proteomics, 2009, 8, 681-695.	3.8	35
133	Systematical Optimization of Reverse-Phase Chromatography for Shotgun Proteomics. Journal of Proteome Research, 2009, 8, 3944-3950.	3.7	163
134	Proteomics Analysis Reveals Novel Components in the Detergent-Insoluble Subproteome in Alzheimer's Disease. Journal of Proteome Research, 2009, 8, 5069-5079.	3.7	76
135	Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation. Cell, 2009, 137, 133-145.	28.9	948
136	Systematic Approach for Validating the Ubiquitinated Proteome. Analytical Chemistry, 2008, 80, 4161-4169.	6.5	65
137	Phosphoproteomic Analysis of Human Brain by Calcium Phosphate Precipitation and Mass Spectrometry. Journal of Proteome Research, 2008, 7, 2845-2851.	3.7	87
138	Proteomic identification of novel proteins associated with Lewy bodies. Frontiers in Bioscience - Landmark, 2008, Volume, 3850.	3.0	134
139	Neuronal Morphogenesis Is Regulated by the Interplay between Cyclin-Dependent Kinase 5 and the Ubiquitin Ligase Mind Bomb 1. Journal of Neuroscience, 2007, 27, 9503-9512.	3.6	68
140	A Proteomic Strategy for Quantifying Polyubiquitin Chain Topologies. Israel Journal of Chemistry, 2006, 46, 171-182.	2.3	20
141	Relative and Absolute Quantification of Postsynaptic Density Proteome Isolated from Rat Forebrain and Cerebellum. Molecular and Cellular Proteomics, 2006, 5, 1158-1170.	3.8	440
142	Merger of Laser Capture Microdissection and Mass Spectrometry: A Window into the Amyloid Plaque Proteome. Methods in Enzymology, 2006, 412, 77-93.	1.0	28
143	Proteomic Characterization of Postmortem Amyloid Plaques Isolated by Laser Capture Microdissection. Journal of Biological Chemistry, 2004, 279, 37061-37068.	3.4	267
144	Semiquantitative Proteomic Analysis of Rat Forebrain Postsynaptic Density Fractions by Mass Spectrometry, Journal of Biological Chemistry, 2004, 279, 21003-21011.	3.4	417