Kwan Hyun Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4213190/publications.pdf

Version: 2024-02-01

759233 794594 47 433 12 19 h-index citations g-index papers 47 47 47 494 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Facile fabrication of flexible metal grid transparent electrode using inkjet-printed dot array as sacrificial layer. Scientific Reports, 2022, 12, 1572.	3.3	4
2	High-Resolution Patterning of Organic Emitting-Layer by Using Inkjet Printing and Sublimation Transfer Process. Nanomaterials, 2022, 12, 1611.	4.1	2
3	Large-Scale and High-Resolution Patterning Based on the Intense Pulsed Light Transfer of Inkjet-Printed Light-Emitting Materials. Macromolecular Research, 2021, 29, 172-177.	2.4	12
4	Investigation of the Chemical Structure of Ultra-Thin Polyimide Substrate for the Xenon Flash Lamp Lift-off Technology. Polymers, 2021, 13, 546.	4.5	3
5	Feature Size Control by Layer-by-Layer Printing and Non-wettable Patterns for Inkjet Printing of Micro Metal Electrode. Journal of Electrical Engineering and Technology, 2021, 16, 2157-2165.	2.0	4
6	Investigation of high-performance perovskite nanocrystals for inkjet-printed color conversion layers with superior color purity. APL Photonics, 2021, 6, .	5.7	25
7	65â€6: Control of Oxygen Vacancy in ZnO Nanoparticles Electron Transport Layer by Intense Pulsedâ€Light Postâ€Treatment Under Fabrication of Inkâ€Jet Printed QLEDs. Digest of Technical Papers SID International Symposium, 2021, 52, 963-966.	0.3	0
8	Low-energy intense pulsed light annealing of InZnO sol-gel films via employment of a resonant absorber. Applied Physics Letters, 2021, 119, .	3.3	1
9	Synthesis and characterisation of dimeric triphenylmethane water-soluble dyes for high-speed inkjet printing. Dyes and Pigments, 2021, 196, 109737.	3.7	4
10	Residual-Solvent-Induced Morphological Transformation by Intense Pulsed Light on Spin-Coated and Inkjet-Printed ZnO NP Films for Quantum-Dot Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 50111-50120.	8.0	6
11	Co-solvented solution filling and interfacial phenomena of sublimation transferred emitting layer for high-resolution OLED fabrication. APL Materials, 2021, 9, 101115.	5.1	4
12	Spectral response tuning of organic photodetectors using strong microcavity effects for medical X-ray detector application. Organic Electronics, 2021, , 106384.	2.6	3
13	Micro multi-nozzle jet coating of organic thin film for organic light-emitting diode lighting devices. Micro and Nano Systems Letters, 2021, 9, .	3.7	1
14	Pâ€232: Laser Assisted Plasma Enhanced Chemical Vapor Deposition for Damageâ€Resistive and Reliable Thin Film Encapsulation of Organic Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2020, 51, 1572-1575.	0.3	0
15	Effect of Time-Dependent Characteristics of ZnO Nanoparticles Electron Transport Layer Improved by Intense-Pulsed Light Post-Treatment on Hole-Electron Injection Balance of Quantum-Dot Light-Emitting Diodes. Materials, 2020, 13, 5041.	2.9	5
16	Sequential Improvement from Cosolvents Ink Formulation to Vacuum Annealing for Ink-Jet Printed Quantum-Dot Light-Emitting Diodes. Materials, 2020, 13, 4754.	2.9	12
17	Xenon Flash Lamp Lift-Off Technology without Laser for Flexible Electronics. Micromachines, 2020, 11, 953.	2.9	7
18	Solution and Evaporation Hybrid Approach to Enhance the Stability and Pattern Resolution Characteristics of Organic Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 45064-45072.	8.0	22

#	Article	IF	CITATIONS
19	The synthesis and characterisation of the highly stable perovskite nano crystals and their application to ink-jet printed colour conversion layers. Journal of Industrial and Engineering Chemistry, 2020, 85, 226-239.	5.8	14
20	Role of a 193 nm ArF Excimer Laser in Laser-Assisted Plasma-Enhanced Chemical Vapor Deposition of SiNx for Low Temperature Thin Film Encapsulation. Micromachines, 2020, 11, 88.	2.9	5
21	Inkjet printed quantum dot film formed by controlling surface wettability for blue-to-green color conversion. Organic Electronics, 2020, 84, 105814.	2.6	22
22	Optical and Electrical Analysis of Annealing Temperature of High-Molecular Weight Hole Transport Layer for Quantum-dot Light-emitting Diodes. Scientific Reports, 2019, 9, 10385.	3.3	15
23	Thermally transferred emitting layer at low pressure for residual solvent-free organic light-emitting diodes. Organic Electronics, 2019, 67, 287-293.	2.6	6
24	Pâ€73: Highâ€Resolution Color Patterning of an OLED Device via Capillaryâ€Induced Ink Filling and a Sublimation Transfer Process. Digest of Technical Papers SID International Symposium, 2019, 50, 1507-1510.	0.3	5
25	The synthesis and characterisation of the perylene acid dye inks for digital textile printing. Dyes and Pigments, 2019, 163, 381-392.	3.7	38
26	Effect of Meniscus Damping Ratio on Drop-on-Demand Electrohydrodynamic Jetting. Applied Sciences (Switzerland), 2018, 8, 164.	2.5	13
27	Strong microcavity effects in hybrid quantum dot/blue organic light-emitting diodes using Ag based electrode. Journal of Luminescence, 2018, 203, 540-545.	3.1	6
28	Enhanced light extraction efficiency of OLEDs with quasiperiodic diffraction grating layer. Optics Express, 2016, 24, 17950.	3.4	34
29	Bulk-like Al/Ag bilayer film due to suppression of surface plasmon resonance for high transparent organic light emitting diodes. Organic Electronics, 2016, 33, 116-120.	2.6	45
30	Effect of CO ₂ Laser on SiN _{<i>x</i>} Films Fabricated by Low-Temperature Laser-Assisted Plasma Enhanced Chemical Vapor Deposition. Nanoscience and Nanotechnology Letters, 2016, 8, 549-554.	0.4	3
31	Low Temperature Deposition of Inorganic Thin Films by Ultraviolet Laser-Assisted Chemical Vapor Deposition. Nanoscience and Nanotechnology Letters, 2016, 8, 586-591.	0.4	3
32	Surface plasmon-waveguide hybrid polymer light-emitting devices using hexagonal Ag dots. Optics Letters, 2012, 37, 761.	3.3	10
33	Simulation of Surface Plasmon Coupled Conjugate Polymer for Polymer Light-Emitting Diodes. Journal of Display Technology, 2012, 8, 65-69.	1.2	1
34	Photoexcitations From Intrachain and Interchain Excitons of Surface Plasmon Mediated Conjugated Polymers for PLED. Journal of Display Technology, 2012, 8, 439-443.	1.2	1
35	P-91 : AC Plasma Display Panel with Gold Nano-particles Inserted into an MgO Protective Layer. Digest of Technical Papers SID International Symposium, 2010, 41, 1588.	0.3	1
36	The Effect of Disordered Microscale Holes in the Front Dielectric Layer of AC Plasma Display Panels. IEEE Transactions on Electron Devices, 2010, 57, 2183-2189.	3.0	5

#	Article	IF	CITATIONS
37	Influence of Gold Nanoparticles on the Characteristics of Plasma Display Panels. IEEE Transactions on Electron Devices, 2010, 57, 2644-2650.	3.0	13
38	Surface plasmonic controllable enhanced emission from the intrachain and interchain excitons of a conjugated polymer. Applied Physics Letters, 2010, 97, 193306.	3.3	44
39	Analysis of the driving characteristics for an ACPDP with an auxiliary electrode using the voltageâ€transfer closed surface. Journal of the Society for Information Display, 2009, 17, 883-890.	2.1	2
40	Effects of Various Sustain Electrode Gaps on the Discharge Characteristics of an AC PDP With an Auxiliary Electrode. IEEE Transactions on Plasma Science, 2009, 37, 2074-2081.	1.3	3
41	Use of zeolites in the capture of charged particles from plasma. Applied Physics Letters, 2008, 93, 071507.	3.3	6
42	Pâ€129: The Effect of Front Dielectric Thickness on Luminous Efficacy in AC PDP with Auxiliary Electrode. Digest of Technical Papers SID International Symposium, 2008, 39, 1686-1689.	0.3	0
43	P-134: Dependency of Auxiliary Pulse Width on Luminous Efficacy in AC Plasma Display Panel. Digest of Technical Papers SID International Symposium, 2008, 39, 1705.	0.3	1
44	P-137: Investigation of Discharge Phenomena in AC-PDPs with an Auxiliary Electrode Using the Vt Closed Surface. Digest of Technical Papers SID International Symposium, 2008, 39, 1721.	0.3	1
45	49.3: <i>Invited Paper</i> : High Efficient Discharge Mode in an AC PDP with an Auxiliary Electrode. Digest of Technical Papers SID International Symposium, 2007, 38, 1530-1534.	0.3	2
46	Wall Voltage and Priming Effect Due to Auxiliary Electrode in AC PDP With Auxiliary Electrode. IEEE Transactions on Plasma Science, 2007, 35, 1567-1573.	1.3	19
47	Application of microplasma modes to a highly efficient light source for displays. , 2007, , .		O