Bernard Lopez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/42131/publications.pdf

Version: 2024-02-01

66336 6,285 105 42 citations h-index papers

g-index 113 113 113 7848 docs citations times ranked citing authors all docs

71682

76

#	Article	IF	CITATIONS
1	RAD51 protects against nonconservative DNA double-strand break repair through a nonenzymatic function. Nucleic Acids Research, 2022, 50, 2651-2666.	14.5	8
2	Homozygous hypomorphic <i>BRCA2</i> variant in primary ovarian insufficiency without cancer or Fanconi anaemia trait. Journal of Medical Genetics, 2021, 58, 125-134.	3.2	24
3	Homologous recombination in mammalian cells: From molecular mechanisms to pathology. , 2021, , 367-392.		O
4	Targeting acute myeloid leukemia dependency on VCP-mediated DNA repair through a selective second-generation small-molecule inhibitor. Science Translational Medicine, $2021,13,.$	12.4	29
5	Mouse Models for Deciphering the Impact of Homologous Recombination on Tumorigenesis. Cancers, 2021, 13, 2083.	3.7	8
6	Homologous recombination, cancer and the â€~RAD51 paradox'. NAR Cancer, 2021, 3, zcab016.	3.1	15
7	Phospho-Ku70 induced by DNA damage interacts with RNA Pol II and promotes the formation of phospho-53BP1 foci to ensure optimal cNHEJ. Nucleic Acids Research, 2021, 49, 11728-11745.	14.5	10
8	BINDING OF DNA TO NATURAL SEPIOLITE: APPLICATIONS IN BIOTECHNOLOGY AND PERSPECTIVES. Clays and Clay Minerals, 2021, 69, 633-640.	1.3	3
9	Responses of human cells to sepiolite interaction. Applied Clay Science, 2020, 194, 105655.	5.2	11
10	ATRIP protects progenitor cells against DNA damage in vivo. Cell Death and Disease, 2020, 11, 923.	6.3	5
11	Biotechnological applications of the sepiolite interactions with bacteria: Bacterial transformation and DNA extraction. Applied Clay Science, 2020, 191, 105613.	5.2	14
12	Replication Stress, DNA Damage, Inflammatory Cytokines and Innate Immune Response. Genes, 2020, 11, 409.	2.4	77
13	The high protein expression of FOXO3, but not that of FOXO1, is associated with markers of good prognosis. Scientific Reports, 2020, 10, 6920.	3.3	5
14	Combining Homologous Recombination and Phosphopeptide-binding Data to Predict the Impact of <i>BRCA1</i> BRCT Variants on Cancer Risk. Molecular Cancer Research, 2019, 17, 54-69.	3.4	21
15	The Cohesion complex maintains genome stability by preventing end joining of distant DNA ends in S phase. Molecular and Cellular Oncology, 2018, 5, e1154123.	0.7	1
16	SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature, 2018, 557, 57-61.	27.8	319
17	Sepiolite as a New Nanocarrier for DNA Transfer into Mammalian Cells: Proof of Concept, Issues and Perspectives. Chemical Record, 2018, 18, 849-857.	5.8	16
18	CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nature Communications, 2018, 9, 1133.	12.8	165

#	Article	IF	CITATIONS
19	Involvement of the FOXO6 transcriptional factor in breast carcinogenesis. Oncotarget, 2018, 9, 7464-7475.	1.8	12
20	Genomic rearrangements induced by unscheduled <scp>DNA</scp> double strand breaks in somatic mammalian cells. FEBS Journal, 2017, 284, 2324-2344.	4.7	39
21	PARP2 controls double-strand break repair pathway choice by limiting 53BP1 accumulation at DNA damage sites and promoting end-resection. Nucleic Acids Research, 2017, 45, 12325-12339.	14.5	31
22	Cellular uptake pathways of sepiolite nanofibers and DNA transfection improvement. Scientific Reports, 2017, 7, 5586.	3.3	35
23	Combined therapy of colon carcinomas with an oncolytic adenovirus and valproic acid. Oncotarget, 2017, 8, 97344-97360.	1.8	11
24	53BP1 Protects against CtIP-Dependent Capture of Ectopic Chromosomal Sequences at the Junction of Distant Double-Strand Breaks. PLoS Genetics, 2016, 12, e1006230.	3.5	27
25	Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress. PLoS Genetics, 2016, 12, e1006007.	3.5	38
26	A nonsense mutation in the DNA repair factor Hebo causes mild bone marrow failure and microcephaly. Journal of Experimental Medicine, 2016, 213, 1011-1028.	8.5	34
27	Signaling from Mus81-Eme2-Dependent DNA Damage Elicited by Chk1 Deficiency Modulates Replication Fork Speed and Origin Usage. Cell Reports, 2016, 14, 1114-1127.	6.4	71
28	A threshold of endogenous stress is required to engage cellular response to protect against mutagenesis. Scientific Reports, 2016, 6, 29412.	3.3	5
29	Physical interactions between DNA and sepiolite nanofibers, and potential application for DNA transfer into mammalian cells. Scientific Reports, 2016, 6, 36341.	3.3	33
30	Yeast cells reveal the misfolding and the cellular mislocalisation of the human BRCA1 protein. Journal of Cell Science, 2016, 129, 4366-4378.	2.0	2
31	The cohesin complex prevents the end-joining of distant DNA double-strand ends in S phase: Consequences on genome stability maintenance. Nucleus, 2016, 7, 339-345.	2.2	9
32	Control of alternative end joining by the chromatin remodeler p400 ATPase. Nucleic Acids Research, 2016, 44, 1657-1668.	14.5	18
33	The Cohesin Complex Prevents the End Joining of Distant DNA Double-Strand Ends. Molecular Cell, 2016, 61, 15-26.	9.7	69
34	Replication Stress in Mammalian Cells and Its Consequences for Mitosis. Genes, 2015, 6, 267-298.	2.4	91
35	Role of the double-strand break repair pathway in the maintenance of genomic stability. Molecular and Cellular Oncology, 2015, 2, e968020.	0.7	21
36	Spontaneous slow replication fork progression elicits mitosis alterations in homologous recombination-deficient mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 763-768.	7.1	66

#	Article	IF	Citations
37	Is homologous recombination really an error-free process?. Frontiers in Genetics, 2014, 5, 175.	2.3	106
38	Is Non-Homologous End-Joining Really an Inherently Error-Prone Process?. PLoS Genetics, 2014, 10, e1004086.	3.5	339
39	PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways. Nucleic Acids Research, 2014, 42, 5616-5632.	14.5	82
40	RhoB Promotes \hat{I}^3 H2AX Dephosphorylation and DNA Double-Strand Break Repair. Molecular and Cellular Biology, 2014, 34, 3144-3155.	2.3	37
41	Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1. Journal of Cell Biology, 2014, 206, 877-894.	5.2	92
42	The causes of replication stress and their consequences on genome stability and cell fate. Seminars in Cell and Developmental Biology, 2014, 30, 154-164.	5.0	116
43	A Role for BLM in Double-Strand Break Repair Pathway Choice: Prevention of CtIP/Mre11-Mediated Alternative Nonhomologous End-Joining. Cell Reports, 2013, 5, 21-28.	6.4	73
44	Homologous Recombination in Mammals. Topics in Current Genetics, 2013, , 91-120.	0.7	1
45	The helicase FBH1 is tightly regulated by PCNA via CRL4(Cdt2)-mediated proteolysis in human cells. Nucleic Acids Research, 2013, 41, 6501-6513.	14.5	65
46	BRCA1-Ku80 Protein Interaction Enhances End-joining Fidelity of Chromosomal Double-strand Breaks in the G1 Phase of the Cell Cycle. Journal of Biological Chemistry, 2013, 288, 8966-8976.	3.4	46
47	Terminal deoxynucleotidyl transferase requires KU80 and XRCC4 to promote N-addition at non-V(D)J chromosomal breaks in non-lymphoid cells. Nucleic Acids Research, 2012, 40, 8381-8391.	14.5	20
48	The nucleoporin 153, a novel factor in double-strand break repair and DNA damage response. Oncogene, 2012, 31, 4803-4809.	5.9	58
49	The secret life of Bcl-2: Apoptosis-independent inhibition of DNA repair by Bcl-2 family members. Mutation Research - Reviews in Mutation Research, 2012, 751, 247-257.	5.5	61
50	Oxidative stress induces an ATM-independent senescence pathway through p38 MAPK-mediated lamin B1 accumulation. EMBO Journal, 2012, 31, 1080-1094.	7.8	163
51	Initiation of DNA double strand break repair: signaling and single-stranded resection dictate the choice between homologous recombination, non-homologous end-joining and alternative end-joining. American Journal of Cancer Research, 2012, 2, 249-68.	1.4	42
52	Downâ€regulation of <i>BRCA1</i> expression by miRâ€146a and miRâ€146bâ€5p in triple negative sporadic breast cancers. EMBO Molecular Medicine, 2011, 3, 279-290.	6.9	229
53	Bcl-2 Inhibits Nuclear Homologous Recombination by Localizing BRCA1 to the Endomembranes. Cancer Research, 2011, 71, 3590-3602.	0.9	38
54	AKT1/BRCA1 in the control of homologous recombination and genetic stability: the missing link between hereditary and sporadic breast cancers. Oncotarget, 2010, 1, 691-699.	1.8	29

#	Article	IF	CITATIONS
55	AKT1/BRCA1 in the control of homologous recombination and genetic stability: the missing link between hereditary and sporadic breast cancers. Oncotarget, 2010, 1, 691-9.	1.8	21
56	Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells. Nature Structural and Molecular Biology, 2009, 16, 819-824.	8.2	273
57	AKT1 represses gene conversion induced by different genotoxic stresses and induces supernumerary centrosomes and aneuploidy in hamster ovary cells. Oncogene, 2009, 28, 2231-2237.	5.9	25
58	S-phase progression stimulates both the mutagenic KU-independent pathway and mutagenic processing of KU-dependent intermediates, for nonhomologous end joining. Oncogene, 2008, 27, 1726-1736.	5.9	26
59	Homologous Recombination is Involved in the Repair Response of Mammalian Cells to Low Doses of Tritium. Radiation Research, 2008, 170, 172-183.	1.5	9
60	AKT1 Inhibits Homologous Recombination by Inducing Cytoplasmic Retention of BRCA1 and RAD51. Cancer Research, 2008, 68, 9404-9412.	0.9	122
61	A homologous recombination defect affects replication-fork progression in mammalian cells. Journal of Cell Science, 2008, 121, 162-166.	2.0	57
62	Importance of the cell cycle phase for the choice of the appropriate DSB repair pathway, for genome stability mintenance: the trans-S double-strand break repair model. Cell Cycle, 2008, 7, 33-38.	2.6	85
63	Defects in XRCC4 and KU80 differentially affect the joining of distal nonhomologous ends. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20902-20907.	7.1	146
64	Involvement of DNA polymerase $\hat{1}\frac{1}{4}$ in the repair of a specific subset of DNA double-strand breaks in mammalian cells. Nucleic Acids Research, 2007, 35, 3551-3560.	14.5	49
65	Targeted Gene Correction with 5′ Acridine-Oligonucleotide Conjugates. Oligonucleotides, 2007, 17, 258-263.	2.7	9
66	XRCC4 in G1 suppresses homologous recombination in S/G2, in G1 checkpoint-defective cells. Oncogene, 2007, 26, 2769-2780.	5.9	30
67	Chronic exposure to sublethal doses of radiation mimetic Zeocinâ,,¢ selects for clones deficient in homologous recombination. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 615, 125-133.	1.0	9
68	Anin vitro enzymatic assay coupled to proteomics analysis reveals a new DNA processing activity for Ewing sarcoma and TAF(II)68 proteins. Proteomics, 2006, 6, 5962-5972.	2.2	37
69	Bax and Bid, two proapoptotic Bcl-2 family members, inhibit homologous recombination, independently of apoptosis regulation. Oncogene, 2006, 25, 3196-3205.	5.9	35
70	The DNA polymerase is required for the repair of non-compatible DNA double strand breaks by NHEJ in mammalian cells. Nucleic Acids Research, 2006, 34, 2998-3007.	14.5	90
71	Genetic interactions between RAD51 and its paralogues for centrosome fragmentation and ploidy control, independently of the sensitivity to genotoxic stresses. Oncogene, 2005, 24, 3691-3696.	5.9	37
72	Improving gene replacement by intracellular formation of linear homologous DNA. Journal of Gene Medicine, 2005, 7, 649-656.	2.8	5

#	Article	IF	Citations
73	Homologous Recombination, Non-Homologous End-Joining and Cell Cycle: Genomes Angels. Current Genomics, 2004, 5, 49-58.	1.6	2
74	DNA polymerase \hat{A} overexpression stimulates the Rad51-dependent homologous recombination in mammalian cells. Nucleic Acids Research, 2004, 32, 5104-5112.	14.5	24
75	p53's double life: transactivation-independent repression of homologous recombination. Trends in Genetics, 2004, 20, 235-243.	6.7	131
76	Impact of the KU80 Pathway on NHEJ-Induced Genome Rearrangements in Mammalian Cells. Molecular Cell, 2004, 14, 611-623.	9.7	285
77	Overexpression of mammalian Rad51 does not stimulate tumorigenesis while a dominant-negative Rad51 affects centrosome fragmentation, ploidy and stimulates tumorigenesis, in p53-defective CHO cells. Oncogene, 2003, 22, 7587-7592.	5.9	73
78	An xrcc4 defect or Wortmannin stimulates homologous recombination specifically induced by double-strand breaks in mammalian cells. Nucleic Acids Research, 2002, 30, 3454-3463.	14.5	114
79	DNA double-strand break repair signalling: The case of RAD51 post-translational regulation. Cellular Signalling, 2002, 14, 969-975.	3.6	103
80	Homologous recombination induced by replication inhibition, is stimulated by expression of mutant p53. Oncogene, 2002, 21, 488-492.	5.9	58
81	Inactivation of the RAD51 recombination pathway stimulates UV-induced mutagenesis in mammalian cells. Oncogene, 2002, 21, 4065-4069.	5.9	28
82	Role of RAD51 in sister-chromatid exchanges in mammalian cells. Oncogene, 2001, 20, 6627-6631.	5.9	52
83	A novel role for the Bcl-2 protein family: specific suppression of the RAD51 recombination pathway. EMBO Journal, 2001, 20, 2596-2607.	7.8	77
84	Characterization of homologous recombination induced by replication inhibition in mammalian cells. EMBO Journal, 2001, 20, 3861-3870.	7.8	278
85	Characterization of mammalian RAD51 double strand break repair using non-lethal dominant-negative forms. EMBO Journal, 2000, 19, 3090-3099.	7.8	113
86	Human 100-kDa homologous DNA-pairing protein is the splicing factor PSF and promotes DNA strand invasion. Nucleic Acids Research, 2000, 28, 3022-3030.	14.5	61
87	Mutant p53 proteins stimulate spontaneous and radiation-induced intrachromosomal homologous recombination independently of the alteration of the transactivation activity and of the G1 checkpoint. Oncogene, 1999, 18, 3553-3563.	5.9	116
88	Human POMp75 is identified as the pro-oncoprotein TLS/FUS: both POMp75 and POMp100 DNA homologous pairing activities are associated to cell proliferation. Oncogene, 1999, 18, 4515-4521.	5.9	80
89	Analysis of intrachromosomal homologous recombination in mammalian cell, using tandem repeat sequences. Mutation Research DNA Repair, 1999, 433, 159-168.	3.7	40
90	Human 75-kDa DNA-pairing Protein Is Identical to the Pro-oncoprotein TLS/FUS and Is Able to Promote D-loop Formation. Journal of Biological Chemistry, 1999, 274, 34337-34342.	3.4	148

#	Article	IF	Citations
91	Chromosome translocation based on illegitimate recombination in human tumors. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11786-11791.	7.1	101
92	Increase of spontaneous intrachromosomal homologous recombination in mammalian cells expressing a mutant p53 protein. Oncogene, 1997, 14, 1117-1122.	5.9	143
93	Characterization of two nuclear mammalian homologous DNA-pairing activities that do not require associated exonuclease activity Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1729-1733.	7.1	25
94	Characterization of RecA mediated homologous pairing on nitrocellulose membrane. Biochimie, 1995, 77, 840-847.	2.6	3
95	Homologous pairing between single-stranded DNA immobilized on a nitrocellulose membrane and duplex DNA is specific for RecA activity in bacterial crude extract. Nucleic Acids Research, 1993, 21, 3653-3657.	14.5	16
96	Directional recombinatior is initiated at a double strand break in human nuclear extracts. Nucleic Acids Research, 1992, 20, 501-506.	14.5	16
97	Structural effect of donor DNA on the initiation of recombination for double strand break repair in human nuclear extracts. Nucleic Acids Research, 1992, 20, 5167-5172.	14.5	3
98	Multiplicity reactivation and mutagenesis of trimethylpsoralen-damaged herpes virus in normal and Fanconi's anaemia cells. Mutagenesis, 1989, 4, 67-71.	2.6	11
99	Molecular analysis of homologous recombination catalysed by human nuclear extract: Fidelity and DNase protection. Biochemical and Biophysical Research Communications, 1989, 158, 454-461.	2.1	4
100	Duplex-Duplex Homologous Recombination Catalysed by a Human Nuclear Extract. Involvement in Double-Strand Break Repair., 1989,, 221-231.		0
101	Promotion of double-strand break repair by human nuclear extracts preferentially involves recombination with intact homologous DNA. Nucleic Acids Research, 1987, 15, 6813-6826.	14.5	19
102	Homologous recombination intermediates between two duplex DNA catalysed by human cell extracts. Nucleic Acids Research, 1987, 15, 5643-5655.	14.5	36
103	?-Thalassemia haplotypes in the Algerian population. Human Genetics, 1987, 75, 272-276.	3.8	15
104	alpha-Thalassaemia associated with the deletion of two nucleotides at position -2 and -3 preceding the AUG codon EMBO Journal, 1985, 4, 1245-1250.	7.8	69
105	alpha-Thalassaemia associated with the deletion of two nucleotides at position -2 and -3 preceding the AUG codon. EMBO Journal, 1985, 4, 1245-50.	7.8	17