
Theodore C Pierson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4213077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipid nanoparticle encapsulated nucleoside-modified mRNA vaccines elicit polyfunctional HIV-1 antibodies comparable to proteins in nonhuman primates. Npj Vaccines, 2021, 6, 50.	6.0	46
2	Broadly neutralizing monoclonal antibodies protect against multiple tick-borne flaviviruses. Journal of Experimental Medicine, 2021, 218, .	8.5	22
3	Limited Flavivirus Cross-Reactive Antibody Responses Elicited by a Zika Virus Deoxyribonucleic Acid Vaccine Candidate in Humans. Journal of Infectious Diseases, 2021, 224, 1550-1555.	4.0	5
4	Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets. Science, 2021, 373, 236-241.	12.6	71
5	Dengue Virus Serotype 1 Conformational Dynamics Confers Virus Strain-Dependent Patterns of Neutralization by Polyclonal Sera. Journal of Virology, 2021, 95, e0095621.	3.4	8
6	Levels of Circulating NS1 Impact West Nile Virus Spread to the Brain. Journal of Virology, 2021, 95, e0084421.	3.4	13
7	Implications of a highly divergent dengue virus strain for cross-neutralization, protection, and vaccine immunity. Cell Host and Microbe, 2021, 29, 1634-1648.e5.	11.0	5
8	Development of a potent Zika virus vaccine using self-amplifying messenger RNA. Science Advances, 2020, 6, eaba5068.	10.3	50
9	Mechanism of differential Zika and dengue virus neutralization by a public antibody lineage targeting the DIII lateral ridge. Journal of Experimental Medicine, 2020, 217, .	8.5	26
10	Nonhuman primates exposed to Zika virus in utero are not protected against reinfection at 1 year postpartum. Science Translational Medicine, 2020, 12, .	12.4	1
11	The continued threat of emerging flaviviruses. Nature Microbiology, 2020, 5, 796-812.	13.3	520
12	The Challenges of Vaccine Development against a New Virus during a Pandemic. Cell Host and Microbe, 2020, 27, 699-703.	11.0	88
13	Distinct neutralizing antibody correlates of protection among related Zika virus vaccines identify a role for antibody quality. Science Translational Medicine, 2020, 12, .	12.4	30
14	Characterization of a Species E Adenovirus Vector as a Zika virus vaccine. Scientific Reports, 2020, 10, 3613.	3.3	15
15	Protective Efficacy of Nucleic Acid Vaccines Against Transmission of Zika Virus During Pregnancy in Mice. Journal of Infectious Diseases, 2019, 220, 1577-1588.	4.0	39
16	Effects of dengue immunity on Zika virus infection. Nature, 2019, 567, 467-468.	27.8	8
17	Dengue and Zika Virus Cross-Reactive Human Monoclonal Antibodies Protect against Spondweni Virus Infection and Pathogenesis in Mice. Cell Reports, 2019, 26, 1585-1597.e4.	6.4	18
18	DNA vaccination before conception protects Zika virus–exposed pregnant macaques against prolonged viremia and improves fetal outcomes. Science Translational Medicine, 2019, 11, .	12.4	31

#	Article	IF	CITATIONS
19	A protective human monoclonal antibody targeting the West Nile virus E protein preferentially recognizes mature virions. Nature Microbiology, 2019, 4, 71-77.	13.3	25
20	Zika Virus Vaccine Development: Progress in the Face of New Challenges. Annual Review of Medicine, 2019, 70, 121-135.	12.2	76
21	The Zika virus envelope protein glycan loop regulates virion antigenicity. Virology, 2018, 515, 191-202.	2.4	49
22	Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: randomised, open-label, phase 1 clinical trials. Lancet, The, 2018, 391, 552-562.	13.7	235
23	Cross-Reactive Flavivirus Antibody: Friend and Foe?. Cell Host and Microbe, 2018, 24, 622-624.	11.0	9
24	An mRNA Vaccine Protects Mice against Multiple Tick-Transmitted Flavivirus Infections. Cell Reports, 2018, 25, 3382-3392.e3.	6.4	79
25	The Many Faces of a Dynamic Virion: Implications of Viral Breathing on Flavivirus Biology and Immunogenicity. Annual Review of Virology, 2018, 5, 185-207.	6.7	49
26	The emergence of Zika virus and its new clinical syndromes. Nature, 2018, 560, 573-581.	27.8	303
27	A VSV-based Zika virus vaccine protects mice from lethal challenge. Scientific Reports, 2018, 8, 11043.	3.3	63
28	Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 2017, 543, 248-251.	27.8	699
29	T Cells Take on Zika Virus. Immunity, 2017, 46, 13-14.	14.3	8
30	Modified mRNA Vaccines Protect against Zika Virus Infection. Cell, 2017, 168, 1114-1125.e10.	28.9	633
31	A single-dose live-attenuated vaccine prevents Zika virus pregnancy transmission and testis damage. Nature Communications, 2017, 8, 676.	12.8	125
32	Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease. Cell, 2017, 170, 273-283.e12.	28.9	224
33	A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis. PLoS Pathogens, 2017, 13, e1006178.	4.7	69
34	The 3.8 Ã resolution cryo-EM structure of Zika virus. Science, 2016, 352, 467-470.	12.6	643
35	Zika Virus Is Not Uniquely Stable at Physiological Temperatures Compared to Other Flaviviruses. MBio, 2016, 7, .	4.1	52
36	Zika Virus: Immunity and Vaccine Development. Cell, 2016, 167, 625-631.	28.9	113

#	Article	IF	CITATIONS
37	Rapid development of a DNA vaccine for Zika virus. Science, 2016, 354, 237-240.	12.6	348
38	Structural Basis of Zika Virus-Specific Antibody Protection. Cell, 2016, 166, 1016-1027.	28.9	325
39	Broadly Neutralizing Activity of Zika Virus-Immune Sera Identifies a Single Viral Serotype. Cell Reports, 2016, 16, 1485-1491.	6.4	190
40	Diagnostics for Zika virus on the horizon. Science, 2016, 353, 750-751.	12.6	27
41	Enhancing dengue virus maturation using a stable furin over-expressing cell line. Virology, 2016, 497, 33-40.	2.4	69
42	Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity. Microbiology and Molecular Biology Reviews, 2016, 80, 989-1010.	6.6	93
43	Zika in the Brain: New Models Shed Light on Viral Infection. Trends in Molecular Medicine, 2016, 22, 639-641.	6.7	12
44	Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control. Cell, 2015, 162, 488-492.	28.9	219
45	Context-Dependent Cleavage of the Capsid Protein by the West Nile Virus Protease Modulates the Efficiency of Virus Assembly. Journal of Virology, 2015, 89, 8632-8642.	3.4	15
46	Shake, rattle, and roll: Impact of the dynamics of flavivirus particles on their interactions with the host. Virology, 2015, 479-480, 508-517.	2.4	103
47	Genotypic Differences in Dengue Virus Neutralization Are Explained by a Single Amino Acid Mutation That Modulates Virus Breathing. MBio, 2015, 6, e01559-15.	4.1	71
48	A Game of Numbers. Progress in Molecular Biology and Translational Science, 2015, 129, 141-166.	1.7	42
49	Potent Dengue Virus Neutralization by a Therapeutic Antibody with Low Monovalent Affinity Requires Bivalent Engagement. PLoS Pathogens, 2014, 10, e1004072.	4.7	51
50	Mechanism and Significance of Cell Type-Dependent Neutralization of Flaviviruses. Journal of Virology, 2014, 88, 7210-7220.	3.4	58
51	Combined Effects of the Structural Heterogeneity and Dynamics of Flaviviruses on Antibody Recognition. Journal of Virology, 2014, 88, 11726-11737.	3.4	91
52	Vaccine Development as a Means to Control Dengue Virus Pathogenesis: Do We Know Enough?. Annual Review of Virology, 2014, 1, 375-398.	6.7	15
53	Pseudo-infectious Reporter Virus Particles for Measuring Antibody-Mediated Neutralization and Enhancement of Dengue Virus Infection. Methods in Molecular Biology, 2014, 1138, 75-97.	0.9	28
54	Flaviviruses: braking the entering. Current Opinion in Virology, 2013, 3, 3-12.	5.4	127

#	Article	IF	CITATIONS
55	Impact of viral attachment factor expression on antibody-mediated neutralization of flaviviruses. Virology, 2013, 437, 20-27.	2.4	3
56	The Type-Specific Neutralizing Antibody Response Elicited by a Dengue Vaccine Candidate Is Focused on Two Amino Acids of the Envelope Protein. PLoS Pathogens, 2013, 9, e1003761.	4.7	34
57	The Fc Region of an Antibody Impacts the Neutralization of West Nile Viruses in Different Maturation States. Journal of Virology, 2013, 87, 13729-13740.	3.4	17
58	Functional Analysis of Antibodies against Dengue Virus Type 4 Reveals Strain-Dependent Epitope Exposure That Impacts Neutralization and Protection. Journal of Virology, 2013, 87, 8826-8842.	3.4	73
59	Structural Basis of Differential Neutralization of DENV-1 Genotypes by an Antibody that Recognizes a Cryptic Epitope. PLoS Pathogens, 2012, 8, e1002930.	4.7	103
60	A Novel Approach for the Rapid Mutagenesis and Directed Evolution of the Structural Genes of West Nile Virus. Journal of Virology, 2012, 86, 3501-3512.	3.4	22
61	Degrees of maturity: the complex structure and biology of flaviviruses. Current Opinion in Virology, 2012, 2, 168-175.	5.4	199
62	Capturing a Virus while It Catches Its Breath. Structure, 2012, 20, 200-202.	3.3	13
63	A West Nile Virus DNA Vaccine Utilizing a Modified Promoter Induces Neutralizing Antibody in Younger and Older Healthy Adults in a Phase I Clinical Trial. Journal of Infectious Diseases, 2011, 203, 1396-1404.	4.0	138
64	Poorly Neutralizing Cross-Reactive Antibodies against the Fusion Loop of West Nile Virus Envelope Protein Protect <i>In Vivo</i> via Fcl³ Receptor and Complement-Dependent Effector Mechanisms. Journal of Virology, 2011, 85, 11567-11580.	3.4	110
65	Antibody-mediated neutralization of flaviviruses: A reductionist view. Virology, 2011, 411, 306-315.	2.4	170
66	The Infectivity of prM-Containing Partially Mature West Nile Virus Does Not Require the Activity of Cellular Furin-Like Proteases. Journal of Virology, 2011, 85, 12067-12072.	3.4	36
67	A Dynamic Landscape for Antibody Binding Modulates Antibody-Mediated Neutralization of West Nile Virus. PLoS Pathogens, 2011, 7, e1002111.	4.7	134
68	Modeling Antibody-Enhanced Dengue Virus Infection and Disease in Mice: Protection or Pathogenesis?. Cell Host and Microbe, 2010, 7, 85-86.	11.0	18
69	Human Monoclonal Antibodies against West Nile Virus Induced by Natural Infection Neutralize at a Postattachment Step. Journal of Virology, 2009, 83, 6494-6507.	3.4	98
70	Complement Protein C1q Reduces the Stoichiometric Threshold for Antibody-Mediated Neutralization of West Nile Virus. Cell Host and Microbe, 2009, 6, 381-391.	11.0	94
71	Temperature-dependent production of pseudoinfectious dengue reporter virus particles by complementation. Virology, 2008, 381, 67-74.	2.4	107
72	Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection. Expert Reviews in Molecular Medicine, 2008, 10, e12.	3.9	146

#	Article	IF	CITATIONS
73	Structural Insights into the Mechanisms of Antibody-Mediated Neutralization of Flavivirus Infection:Âlmplications for Vaccine Development. Cell Host and Microbe, 2008, 4, 229-238.	11.0	249
74	Maturation of West Nile Virus Modulates Sensitivity to Antibody-Mediated Neutralization. PLoS Pathogens, 2008, 4, e1000060.	4.7	158
75	Induction of Epitope-Specific Neutralizing Antibodies against West Nile Virus. Journal of Virology, 2007, 81, 11828-11839.	3.4	157
76	A West Nile Virus DNA Vaccine Induces Neutralizing Antibody in Healthy Adults during a Phase 1 Clinical Trial. Journal of Infectious Diseases, 2007, 196, 1732-1740.	4.0	175
77	The Stoichiometry of Antibody-Mediated Neutralization and Enhancement of West Nile Virus Infection. Cell Host and Microbe, 2007, 1, 135-145.	11.0	262
78	Complement Protein C1q Inhibits Antibody-Dependent Enhancement of Flavivirus Infection in an IgG Subclass-Specific Manner. Cell Host and Microbe, 2007, 2, 417-426.	11.0	113
79	Antibody Recognition and Neutralization Determinants on Domains I and II of West Nile Virus Envelope Protein. Journal of Virology, 2006, 80, 12149-12159.	3.4	272
80	A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection. Virology, 2006, 346, 53-65.	2.4	197
81	West Nile Virus Discriminates between DC-SIGN and DC-SIGNR for Cellular Attachment and Infection. Journal of Virology, 2006, 80, 1290-1301.	3.4	292
82	The Location of Asparagine-linked Glycans on West Nile Virions Controls Their Interactions with CD209 (Dendritic Cell-specific ICAM-3 Grabbing Nonintegrin). Journal of Biological Chemistry, 2006, 281, 37183-37194.	3.4	98