
Krzysztof Wargan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4213003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 2017, 30, 5419-5454.	1.2	4,520
2	Introduction to the SPARC Reanalysis Intercomparison ProjectÂ(S-RIP) and overview of the reanalysis systems. Atmospheric Chemistry and Physics, 2017, 17, 1417-1452.	1.9	276
3	The Ozone Monitoring Instrument: overview of 14 years in space. Atmospheric Chemistry and Physics, 2018, 18, 5699-5745.	1.9	259
4	Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis. Journal of Climate, 2017, 30, 2961-2988.	1.2	114
5	Structure and Dynamics of the Quasi-Biennial Oscillation in MERRA-2. Journal of Climate, 2016, 29, 5339-5354.	1.2	78
6	Assimilated ozone from EOSâ€Aura: Evaluation of the tropopause region and tropospheric columns. Journal of Geophysical Research, 2008, 113, .	3.3	75
7	Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP. Atmospheric Chemistry and Physics, 2017, 17, 12743-12778.	1.9	74
8	Recent Decline in Extratropical Lower Stratospheric Ozone Attributed to Circulation Changes. Geophysical Research Letters, 2018, 45, 5166-5176.	1.5	71
9	Temperature and tropopause characteristics from reanalyses data in the tropical tropopause layer. Atmospheric Chemistry and Physics, 2020, 20, 753-770.	1.9	57
10	Stratospheric Intrusionâ€Influenced Ozone Air Quality Exceedances Investigated in the NASA MERRAâ€⊋ Reanalysis. Geophysical Research Letters, 2017, 44, 10691-10701.	1.5	54
11	Frequency and impact of summertime stratospheric intrusions over Maryland during DISCOVERâ€AQ (2011): New evidence from NASA's GEOSâ€5 simulations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3687-3706.	1.2	49
12	Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model. Journal of Advances in Modeling Earth Systems, 2017, 9, 3019-3044.	1.3	47
13	The global structure of upper troposphereâ€lower stratosphere ozone in GEOSâ€5: A multiyear assimilation of EOS Aura data. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2013-2036.	1.2	46
14	Assessment and applications of NASA ozone data products derived from Aura OMI/MLS satellite measurements in context of the GMI chemical transport model. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5671-5699.	1.2	40
15	The Anomalous 2019 Antarctic Ozone Hole in the GEOS Constituent Data Assimilation System With MLS Observations. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033335.	1.2	34
16	Assimilation of ozone data from the Michelson Interferometer for Passive Atmospheric Sounding. Quarterly Journal of the Royal Meteorological Society, 2005, 131, 2713-2734.	1.0	30
17	Strengthening of the Tropopause Inversion Layer during the 2009 Sudden Stratospheric Warming: A MERRA-2 Study. Journals of the Atmospheric Sciences, 2016, 73, 1871-1887.	0.6	29
18	Reanalysis intercomparisons of stratospheric polar processing diagnostics. Atmospheric Chemistry and Physics, 2018, 18, 13547-13579.	1.9	29

KRZYSZTOF WARGAN

#	Article	IF	CITATIONS
19	Reanalysis comparisons of upper tropospheric–lower stratospheric jets and multiple tropopauses. Atmospheric Chemistry and Physics, 2017, 17, 11541-11566.	1.9	28
20	Regional and Seasonal Trends in Tropical Ozone From SHADOZ Profiles: Reference for Models and Satellite Products. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034691.	1.2	28
21	Tropospheric column ozone response to ENSO in GEOS-5 assimilation of OMI and MLS ozone data. Atmospheric Chemistry and Physics, 2016, 16, 7091-7103.	1.9	27
22	Mechanisms Linked to Recent Ozone Decreases in the Northern Hemisphere Lower Stratosphere. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031631.	1.2	25
23	Multiyear Composite View of Ozone Enhancements and Stratosphereâ€ŧoâ€Ŧroposphere Transport in Dry Intrusions of Northern Hemisphere Extratropical Cyclones. Journal of Geophysical Research D: Atmospheres, 2017, 122, 13436-13457.	1.2	22
24	Antarctic stratospheric ozone from the assimilation of occultation data. Geophysical Research Letters, 2004, 31, .	1.5	20
25	Causes of interannual variability over the southern hemispheric tropospheric ozone maximum. Atmospheric Chemistry and Physics, 2017, 17, 3279-3299.	1.9	18
26	An intercomparison of tropospheric ozone retrievals derived from two Aura instruments and measurements in western North America in 2006. Journal of Geophysical Research, 2011, 116, .	3.3	15
27	Spatial structure of assimilated ozone in the upper troposphere and lower stratosphere. Journal of Geophysical Research, 2010, 115, .	3.3	13
28	NASA GEOS Composition Forecast Modeling System GEOS F v1.0: Stratospheric Composition. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	12
29	Assimilation of ozone profiles from the Improved Limb Atmospheric Spectrometer-II: Study of Antarctic ozone. Journal of Geophysical Research, 2006, 111, .	3.3	11
30	Toward a Reanalysis of Stratospheric Ozone for Trend Studies: Assimilation of the Aura Microwave Limb Sounder and Ozone Mapping and Profiler Suite Limb Profiler Data. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031892.	1.2	10
31	A Moments View of Climatology and Variability of the Asian Summer Monsoon Anticyclone. Journal of Climate, 2021, 34, 7821-7841.	1.2	9
32	On the inclusion of Limb Infrared Monitor of the Stratosphere version 6 ozone in a data assimilation system. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7982-8000.	1.2	7
33	What's in a Name? On the Use and Significance of the Term "Polar Vortex― Geophysical Research Letters, 2022, 49, .	1.5	7
34	Evaluation of Version 3 Total and Tropospheric Ozone Columns From Earth Polychromatic Imaging Camera on Deep Space Climate Observatory for Studying Regional Scale Ozone Variations. Frontiers in Remote Sensing, 2021, 2, .	1.3	5
35	Optimized Umkehr profile algorithm for ozone trend analyses. Atmospheric Measurement Techniques, 2022, 15, 1849-1870.	1.2	4
36	Investigating the utility of hyperspectral sounders in the 9.6 μm band to improve ozone analyses. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 169-184.	1.0	1