Eduard Feireisl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4212925/publications.pdf Version: 2024-02-01

FOUNDO FEIDEISI

#	Article	IF	CITATIONS
1	On the Motion of a Compressible Viscous Fluid Driven by Time Periodic Inflow/Outflow Boundary Conditions. Journal of Dynamics and Differential Equations, 2024, 36, 105-126.	1.0	0
2	Navier–Stokes–Fourier system with Dirichlet boundary conditions. Applicable Analysis, 2022, 101, 4076-4094.	0.6	17
3	Asymptotic stability of solutions to the Navier–Stokes–Fourier system driven by inhomogeneous Dirichlet boundary conditions. Communications in Partial Differential Equations, 2022, 47, 1435-1456.	1.0	2
4	Euler System with a Polytropic Equation of State as a Vanishing Viscosity Limit. Journal of Mathematical Fluid Mechanics, 2022, 24, .	0.4	1
5	On the convergence of a finite volume method for the Navier–Stokes–Fourier system. IMA Journal of Numerical Analysis, 2021, 41, 2388-2422.	1.5	7
6	A Diffuse Interface Model of a Two-Phase Flow with Thermal Fluctuations. Applied Mathematics and Optimization, 2021, 83, 531-563.	0.8	7
7	Stability of planar rarefaction waves under general viscosity perturbation of the isentropic Euler system. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2021, 38, 1725-1737.	0.7	4
8	(S)-convergence and approximation of oscillatory solutions in fluid dynamics. Nonlinearity, 2021, 34, 2327-2349.	0.6	2
9	On Strong Continuity of Weak Solutions to the Compressible Euler System. Journal of Nonlinear Science, 2021, 31, 1.	1.0	Ο
10	Computing oscillatory solutions of the Euler system via ?-convergence. Mathematical Models and Methods in Applied Sciences, 2021, 31, 537-576.	1.7	7
11	Navier–Stokes–Fourier System with General Boundary Conditions. Communications in Mathematical Physics, 2021, 386, 975-1010.	1.0	10
12	On the motion of rigid bodies in a perfect fluid. Nonlinear Differential Equations and Applications, 2021, 28, 1.	0.4	0
13	Some remarks on steady solutions to the Euler system in Rd. Applied Mathematics Letters, 2021, 116, 107031.	1.5	0
14	Weak–strong uniqueness property for models of compressible viscous fluids near vacuum*. Nonlinearity, 2021, 34, 6627-6650.	0.6	3
15	Numerical Analysis of a Model of Two Phase Compressible Fluid Flow. Journal of Scientific Computing, 2021, 89, 1.	1.1	1
16	Ergodic theory for energetically open compressible fluid flows. Physica D: Nonlinear Phenomena, 2021, 423, 132914.	1.3	4
17	Homogenization of a non-homogeneous heat conducting fluid. Asymptotic Analysis, 2021, 125, 327-346.	0.2	0
18	On a class of generalized solutions to equations describing incompressible viscous fluids. Annali Di Matematica Pura Ed Applicata, 2020, 199, 1183-1195.	0.5	15

#	Article	IF	CITATIONS
19	Convergence of Finite Volume Schemes for the Euler Equations via Dissipative Measure-Valued Solutions. Foundations of Computational Mathematics, 2020, 20, 923-966.	1.5	19
20	Solution Semiflow to the Isentropic Euler System. Archive for Rational Mechanics and Analysis, 2020, 235, 167-194.	1.1	19
21	A finite volume scheme for the Euler system inspired by the two velocities approach. Numerische Mathematik, 2020, 144, 89-132.	0.9	22
22	Dissipative Solutions and Semiflow Selection for the Complete Euler System. Communications in Mathematical Physics, 2020, 376, 1471-1497.	1.0	22
23	Globally bounded trajectories for the barotropic Navier–Stokes system with general boundary conditions. Communications in Partial Differential Equations, 2020, 45, 1820-1832.	1.0	5
24	On convergence of approximate solutions to the compressible Euler system. Annals of PDE, 2020, 6, 1.	0.8	8
25	On the density of "wild―initial data for the compressible Euler system. Calculus of Variations and Partial Differential Equations, 2020, 59, 1.	0.9	4
26	Stochastic Navier-Stokes-Fourier equations. Indiana University Mathematics Journal, 2020, 69, 911-975.	0.4	3
27	On solvability and ill-posedness of the compressible Euler system subject to stochastic forces. Analysis and PDE, 2020, 13, 371-402.	0.6	19
28	On global-in-time weak solutions to the magnetohydrodynamic system of compressible inviscid fluids. Nonlinearity, 2020, 33, 139-155.	0.6	16
29	?-convergence as a new tool in numerical analysis. IMA Journal of Numerical Analysis, 2020, 40, 2227-2255.	1.5	17
30	On oscillatory solutions to the complete Euler system. Journal of Differential Equations, 2020, 269, 1521-1543.	1.1	20
31	Stability of Strong Solutions to the NavierStokesFourier System. SIAM Journal on Mathematical Analysis, 2020, 52, 1761-1785.	0.9	12
32	Markov selection for the stochastic compressible Navier–Stokes system. Annals of Applied Probability, 2020, 30, .	0.6	6
33	On a singular limit for the stratified compressible Euler system. Asymptotic Analysis, 2019, 114, 59-72.	0.2	3
34	Errata corrige: "Existence of solutions to some models of phase changes with microscopic movements― Mathematical Methods in the Applied Sciences, 2019, 42, 7537-7538.	1.2	1
35	On uniqueness of dissipative solutions to the isentropic Euler system. Communications in Partial Differential Equations, 2019, 44, 1285-1298.	1.0	13
36	The compressible Navier–Stokes–Cahn–Hilliard equations with dynamic boundary conditions. Mathematical Models and Methods in Applied Sciences, 2019, 29, 2557-2584.	1.7	7

#	Article	IF	CITATIONS
37	On the Low Mach Number Limit for the Compressible Euler System. SIAM Journal on Mathematical Analysis, 2019, 51, 1496-1513.	0.9	16
38	Stability of strong solutions for a model of incompressible two–phase flow under thermal fluctuations. Journal of Differential Equations, 2019, 267, 1836-1858.	1.1	8
39	On weak–strong uniqueness for the compressible Navier–Stokes system with non-monotone pressure law. Communications in Partial Differential Equations, 2019, 44, 271-278.	1.0	12
40	Relative energy approach to a diffuse interface model of a compressible twoâ€phase flow. Mathematical Methods in the Applied Sciences, 2019, 42, 1465-1479.	1.2	7
41	Convergence of a finite volume scheme for the compressible Navier–Stokes system. ESAIM: Mathematical Modelling and Numerical Analysis, 2019, 53, 1957-1979.	0.8	19
42	On a class of compressible viscoelastic rate-type fluids with stress-diffusion. Nonlinearity, 2019, 32, 4665-4681.	0.6	8
43	Stationary solutions to the compressible Navier–Stokes system driven by stochastic forces. Probability Theory and Related Fields, 2019, 174, 981-1032.	0.9	11
44	B. Bibliographical remarks. , 2018, , 317-326.		0
45	Stationary solutions to the compressible Navier–Stokes system with general boundary conditions. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2018, 35, 1457-1475.	0.7	14
46	Asymptotic Preserving Error Estimates for Numerical Solutions of Compressible NavierStokes Equations in the Low Mach Number Regime. Multiscale Modeling and Simulation, 2018, 16, 150-183.	0.6	14
47	Measure-valued solutions to the complete Euler system revisited. Zeitschrift Fur Angewandte Mathematik Und Physik, 2018, 69, 1.	0.7	12
48	Local strong solutions to the stochastic compressible Navier–Stokes system. Communications in Partial Differential Equations, 2018, 43, 313-345.	1.0	25
49	Convergence of a Mixed Finite Element–Finite Volume Scheme for the Isentropic Navier–Stokes System via Dissipative Measure-Valued Solutions. Foundations of Computational Mathematics, 2018, 18, 703-730.	1.5	36
50	Analysis of the adiabatic piston problem via methods of continuum mechanics. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2018, 35, 1377-1408.	0.7	10
51	Weak-strong uniqueness for the compressible Navier-Stokes equations with a hard-sphere pressure law. Science China Mathematics, 2018, 61, 2003-2016.	0.8	15
52	Concepts of Solutions in the Thermodynamics of Compressible Fluids. , 2018, , 1353-1379.		2
53	Singular Limits for Models of Compressible, Viscous, Heat Conducting, and/or Rotating Fluids. , 2018, , 2771-2825.		1
54	On a singular limit for stratified compressible fluids. Nonlinear Analysis: Real World Applications, 2018, 44, 334-346.	0.9	5

#	Article	IF	CITATIONS
55	On a hyperbolic system arising in liquid crystals modeling. Journal of Hyperbolic Differential Equations, 2018, 15, 15-35.	0.3	25
56	Measure-valued solutions to the complete Euler system. Journal of the Mathematical Society of Japan, 2018, 70, .	0.3	30
57	Compressible Fluids Driven by Stochastic Forcing: The Relative Energy Inequality and Applications. Communications in Mathematical Physics, 2017, 350, 443-473.	1.0	23
58	Unconditional convergence and error estimates for bounded numerical solutions of the barotropic Navier–Stokes system. Numerical Methods for Partial Differential Equations, 2017, 33, 1208-1223.	2.0	6
59	Analysis of a diffuse interface model of multispecies tumor growth. Nonlinearity, 2017, 30, 1639-1658.	0.6	52
60	Weak solutions for Euler systems with non-local interactions. Journal of the London Mathematical Society, 2017, 95, 705-724.	0.5	18
61	Regularity and Energy Conservation for the Compressible Euler Equations. Archive for Rational Mechanics and Analysis, 2017, 223, 1375-1395.	1.1	61
62	Error estimates for a numerical method for the compressible Navier–Stokes system on sufficiently smooth domains. ESAIM: Mathematical Modelling and Numerical Analysis, 2017, 51, 279-319.	0.8	12
63	The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier–Stokes system. ESAIM - Control, Optimisation and Calculus of Variations, 2017, 23, 851-868.	0.7	20
64	Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics, 2017,	0.1	95
65	Mathematical Thermodynamics of Viscous Fluids. Lecture Notes in Mathematics, 2017, , 47-100.	0.1	1
66	On the Motion of Chemically Reacting Fluids Through Porous Medium. Springer Proceedings in Mathematics and Statistics, 2017, , 139-152.	0.1	0
67	An anelastic approximation arising in astrophysics. Mathematische Annalen, 2017, 369, 1573-1597.	0.7	3
68	\$\${mathcal {A}}\$\$ A -free rigidity and applications to the compressible Euler system. Annali Di Matematica Pura Ed Applicata, 2017, 196, 1557-1572.	0.5	17
69	Bibliographical Remarks. Advances in Mathematical Fluid Mechanics, 2017, , 501-505.	0.1	Ο
70	Problems on Large Domains. Advances in Mathematical Fluid Mechanics, 2017, , 313-367.	0.1	0
71	Vanishing Dissipation Limits. Advances in Mathematical Fluid Mechanics, 2017, , 369-408.	0.1	0
72	Stratified Fluids. Advances in Mathematical Fluid Mechanics, 2017, , 221-262.	0.1	0

#	Article	IF	CITATIONS
73	Interaction of Acoustic Waves with Boundary. Advances in Mathematical Fluid Mechanics, 2017, , 263-312.	0.1	Ο
74	Existence Theory. Advances in Mathematical Fluid Mechanics, 2017, , 49-144.	0.1	0
75	Fluid Flow Modeling. Advances in Mathematical Fluid Mechanics, 2017, , 1-19.	0.1	Ο
76	Singular Limits: Low Stratification. Advances in Mathematical Fluid Mechanics, 2017, , 167-219.	0.1	0
77	Acoustic Analogies. Advances in Mathematical Fluid Mechanics, 2017, , 409-428.	0.1	0
78	Weak Solutions, A Priori Estimates. Advances in Mathematical Fluid Mechanics, 2017, , 21-47.	0.1	0
79	Asymptotic Analysis: An Introduction. Advances in Mathematical Fluid Mechanics, 2017, , 145-165.	0.1	Ο
80	Dissipative measure-valued solutions to the compressible Navier–Stokes system. Calculus of Variations and Partial Differential Equations, 2016, 55, 1.	0.9	59
81	A Rigorous Justification of the Euler and NavierStokes Equations with Geometric Effects. SIAM Journal on Mathematical Analysis, 2016, 48, 3907-3930.	0.9	17
82	Mathematical Model. Advances in Mathematical Fluid Mechanics, 2016, , 25-30.	0.1	0
83	Convergence of a numerical method for the compressible Navier–Stokes system on general domains. Numerische Mathematik, 2016, 134, 667-704.	0.9	13
84	On Global Well/Ill-Posedness of the Euler-Poisson System. Advances in Mathematical Fluid Mechanics, 2016, , 215-231.	0.1	0
85	On the low Mach number limit of compressible flows in exterior moving domains. Journal of Evolution Equations, 2016, 16, 705-722.	0.6	2
86	A Convergent Numerical Method for the Full NavierStokesFourier System in Smooth Physical Domains. SIAM Journal on Numerical Analysis, 2016, 54, 3062-3082.	1.1	7
87	Incompressible Limit for Compressible Fluids with Stochastic Forcing. Archive for Rational Mechanics and Analysis, 2016, 222, 895-926.	1.1	20
88	On asymptotic isotropy for a hydrodynamic model of liquid crystals. Asymptotic Analysis, 2016, 97, 189-210.	0.2	16
89	On the motion of viscous, compressible, and heat-conducting liquids. Journal of Mathematical Physics, 2016, 57, 083101.	0.5	16
90	A convergent numerical method for the Navier–Stokes–Fourier system. IMA Journal of Numerical Analysis, 2016, 36, 1477-1535.	1.5	35

#	Article	IF	CITATIONS
91	Dissipative weak solutions to compressible Navier–Stokes–Fokker–Planck systems with variable viscosity coefficients. Journal of Mathematical Analysis and Applications, 2016, 443, 322-351.	0.5	8
92	On PDE analysis of flows of quasi-incompressible fluids. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2016, 96, 491-508.	0.9	18
93	On singular limits arising in the scale analysis of stratified fluid flows. Mathematical Models and Methods in Applied Sciences, 2016, 26, 419-443.	1.7	22
94	On weak solutions to the 2D Savage–Hutter model of the motion of a gravity-driven avalanche flow. Communications in Partial Differential Equations, 2016, 41, 759-773.	1.0	6
95	Mathematical analysis of variable density flows in porous media. Journal of Evolution Equations, 2016, 16, 1-19.	0.6	5
96	Homogenization of the evolutionary Navier–Stokes system. Manuscripta Mathematica, 2016, 149, 251-274.	0.3	22
97	On weak solutions to a diffuse interface model of a binary mixture of compressible fluids. Discrete and Continuous Dynamical Systems - Series S, 2016, 9, 173-183.	0.6	7
98	Vanishing dissipation limit for the Navier–Stokes–Fourier system. Communications in Mathematical Sciences, 2016, 14, 1535-1551.	0.5	10
99	Weak Sequential Stability. Advances in Mathematical Fluid Mechanics, 2016, , 55-77.	0.1	0
100	Consistency. Advances in Mathematical Fluid Mechanics, 2016, , 111-133.	0.1	0
101	A Priori Bounds. Advances in Mathematical Fluid Mechanics, 2016, , 39-47.	0.1	0
102	Weak Solutions. Advances in Mathematical Fluid Mechanics, 2016, , 31-38.	0.1	0
103	Concepts of Solutions in the Thermodynamics of Compressible Fluids. , 2016, , 1-27.		0
104	Weak Formulation Revisited. Advances in Mathematical Fluid Mechanics, 2016, , 49-53.	0.1	0
105	Strong Convergence of the Approximate Densities. Advances in Mathematical Fluid Mechanics, 2016, , 165-176.	0.1	0
106	Weak Solutions with Artificial Pressure. Advances in Mathematical Fluid Mechanics, 2016, , 157-164.	0.1	0
107	Numerical Method. Advances in Mathematical Fluid Mechanics, 2016, , 81-102.	0.1	0
108	Stability of the Numerical Method. Advances in Mathematical Fluid Mechanics, 2016, , 103-109.	0.1	0

#	Article	IF	CITATIONS
109	Concluding Remarks and Suggestions forÂFurther Reading. Advances in Mathematical Fluid Mechanics, 2016, , 177-178.	0.1	0
110	Preliminaries, Notation, and Spaces of Functions. Advances in Mathematical Fluid Mechanics, 2016, , 1-22.	0.1	0
111	Singular Limits for Models of Compressible, Viscous, Heat Conducting, and/or Rotating Fluids. , 2016, , 1-55.		Ο
112	Uniqueness of rarefaction waves in multidimensional compressible Euler system. Journal of Hyperbolic Differential Equations, 2015, 12, 489-499.	0.3	27
113	Scale analysis of a hydrodynamic model of plasma. Mathematical Models and Methods in Applied Sciences, 2015, 25, 371-394.	1.7	18
114	Robustness of strong solutions to the compressible Navier-Stokes system. Mathematische Annalen, 2015, 362, 281-303.	0.7	7
115	Homogenization of Stationary Navier–Stokes Equations in Domains with Tiny Holes. Journal of Mathematical Fluid Mechanics, 2015, 17, 381-392.	0.4	23
116	The Navier–Stokes–Fourier system: From weak solutions to numerical analysis. Analysis (Germany), 2015, 35, .	0.2	2
117	On the energy inequality for weak solutions to the Navier–Stokes equations of compressible fluids on unbounded domains. Nonlinear Analysis: Theory, Methods & Applications, 2015, 128, 136-148.	0.6	2
118	Robustness of one-dimensional viscous fluid motion under multidimensional perturbations. Journal of Differential Equations, 2015, 259, 7529-7539.	1.1	3
119	Well/III Posedness for the Euler-Korteweg-Poisson System and Related Problems. Communications in Partial Differential Equations, 2015, 40, 1314-1335.	1.0	45
120	On the weak solutions to the equations of a compressible heat conducting gas. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2015, 32, 225-243.	0.7	35
121	Nonisothermal nematic liquid crystal flows with the Ball–Majumdar free energy. Annali Di Matematica Pura Ed Applicata, 2015, 194, 1269-1299.	0.5	23
122	Multiple Scales and Singular Limits for Compressible Rotating Fluids with General Initial Data. Communications in Partial Differential Equations, 2014, 39, 1104-1127.	1.0	31
123	Inviscid incompressible limits on expanding domains. Nonlinearity, 2014, 27, 2465-2477.	0.6	12
124	Incompressible Limits of Fluids Excited by Moving Boundaries. SIAM Journal on Mathematical Analysis, 2014, 46, 1456-1471.	0.9	8
125	Inviscid incompressible limits of strongly stratified fluids. Asymptotic Analysis, 2014, 89, 307-329.	0.2	11
126	Dimension Reduction for Compressible Viscous Fluids. Acta Applicandae Mathematicae, 2014, 134, 111-121.	0.5	40

#	Article	IF	CITATIONS
127	Maximal Dissipation and Well-posedness for the Compressible Euler System. Journal of Mathematical Fluid Mechanics, 2014, 16, 447-461.	0.4	28
128	Scale interactions in compressible rotating fluids. Annali Di Matematica Pura Ed Applicata, 2014, 193, 1703-1725.	0.5	26
129	Polynomial stabilization of some dissipative hyperbolic systems. Discrete and Continuous Dynamical Systems, 2014, 34, 4371-4388.	0.5	6
130	A Regularity Criterion for the Weak Solutions to the Navier–Stokes–Fourier System. Archive for Rational Mechanics and Analysis, 2014, 212, 219-239.	1.1	23
131	Inviscid Incompressible Limits Under Mild Stratification: A Rigorous Derivation of the Euler–Boussinesq System. Applied Mathematics and Optimization, 2014, 70, 279-307.	0.8	20
132	Front propagation in nonlinear parabolic equations. Journal of the London Mathematical Society, 2014, 90, 551-572.	0.5	0
133	Rotating compressible fluids under strong stratification. Nonlinear Analysis: Real World Applications, 2014, 19, 11-18.	0.9	11
134	Dissipative solutions and the incompressible inviscid limits of the compressible magnetohydrodynamic system in unbounded domains. Discrete and Continuous Dynamical Systems, 2014, 34, 121-143.	0.5	30
135	Evolution of non-isothermal Landau–de Gennes nematic liquid crystals flows with singular potential. Communications in Mathematical Sciences, 2014, 12, 317-343.	0.5	27
136	New developments in mathematical theory of fluid mechanics. Discrete and Continuous Dynamical Systems - Series S, 2014, 7, .	0.6	0
137	Mathematical analysis of fluids in motion: from well-posedness to model reduction. Revista Matematica Complutense, 2013, 26, 299-340.	0.7	5
138	Inviscid Incompressible Limits of the Full Navier-Stokes-Fourier System. Communications in Mathematical Physics, 2013, 321, 605-628.	1.0	52
139	Sensitivity analysis of <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mn>1</mml:mn><mml:mo>â~`</mml:mo><mml:mi>d</mml:mi></mml:math> steady forced scalar conservation laws. Journal of Differential Equations, 2013, 254, 3817-3834.	1.1	5
140	STABILITY WITH RESPECT TO DOMAIN OF THE LOW MACH NUMBER LIMIT OF COMPRESSIBLE VISCOUS FLUIDS. Mathematical Models and Methods in Applied Sciences, 2013, 23, 2465-2493.	1.7	17
141	Suitable weak solutions: from compressible viscous to incompressible inviscid fluid flows. Mathematische Annalen, 2013, 356, 683-702.	0.7	2
142	Long Time Behavior and Stabilization to Equilibria of Solutions to the Navier–Stokes–Fourier System Driven by Highly Oscillating Unbounded External Forces. Journal of Dynamics and Differential Equations, 2013, 25, 257-268.	1.0	4
143	Weak solutions to the barotropic Navier–Stokes system with slip boundary conditions in time dependent domains. Journal of Differential Equations, 2013, 254, 125-140.	1.1	27
144	Compressible fluid flows driven by stochastic forcing. Journal of Differential Equations, 2013, 254, 1342-1358.	1.1	20

#	Article	IF	CITATIONS
145	Scaling and singular limits in the equations of continuum fluid mechanics. Methods and Applications of Analysis, 2013, 20, 115-140.	0.1	0
146	A Singular Limit for Compressible Rotating Fluids. SIAM Journal on Mathematical Analysis, 2012, 44, 192-205.	0.9	32
147	Relative Entropies, Suitable Weak Solutions, and Weak-Strong Uniqueness for the Compressible Navier–Stokes System. Journal of Mathematical Fluid Mechanics, 2012, 14, 717-730.	0.4	168
148	Continuity of Drag and Domain Stability in the Low Mach Number Limits. Journal of Mathematical Fluid Mechanics, 2012, 14, 731-750.	0.4	1
149	Multi-scale Analysis of Compressible Viscous and Rotating Fluids. Communications in Mathematical Physics, 2012, 314, 641-670.	1.0	32
150	On the Vanishing Electron-Mass Limit in Plasma Hydrodynamics in Unbounded Media. Journal of Nonlinear Science, 2012, 22, 985-1012.	1.0	13
151	Weak–Strong Uniqueness Property for the Full Navier–Stokes–Fourier System. Archive for Rational Mechanics and Analysis, 2012, 204, 683-706.	1.1	140
152	Time-Periodic Solutions to the Full Navier–Stokes–Fourier System. Archive for Rational Mechanics and Analysis, 2012, 204, 745-786.	1.1	66
153	A New Approach to Non-Isothermal Models for Nematic Liquid Crystals. Archive for Rational Mechanics and Analysis, 2012, 205, 651-672.	1.1	56
154	Travelling waves in a convection–diffusion equation. Journal of Differential Equations, 2012, 252, 2296-2310.	1.1	3
155	Low Mach Number Limits of Compressible Rotating Fluids. Journal of Mathematical Fluid Mechanics, 2012, 14, 61-78.	0.4	11
156	On the Oberbeck–Boussinesq Approximation on Unbounded Domains. Abel Symposia, 2012, , 131-168.	0.3	8
157	Relative entropies in thermodynamics of complete fluid systems. Discrete and Continuous Dynamical Systems, 2012, 32, 3059-3080.	0.5	39
158	Local Decay of Acoustic Waves in the Low Mach Number Limits on General Unbounded Domains Under Slip Boundary Conditions. Communications in Partial Differential Equations, 2011, 36, 1778-1796.	1.0	11
159	Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids. Indiana University Mathematics Journal, 2011, 60, 611-632.	0.4	109
160	On a model in radiation hydrodynamics. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2011, 28, 797-812.	0.7	40
161	The effective boundary conditions for vector fields on domains with rough boundaries: Applications to fluid mechanics. Applications of Mathematics, 2011, 56, 39-49.	0.9	3
162	Convergence of a Brinkman-type penalization for compressible fluid flows. Journal of Differential Equations, 2011, 250, 596-606.	1.1	37

#	Article	IF	CITATIONS
163	On the long-time behaviour of a rigid body immersed in a viscous fluid. Applicable Analysis, 2011, 90, 59-66.	0.6	5
164	On a non-isothermal model for nematic liquid crystals. Nonlinearity, 2011, 24, 243-257.	0.6	45
165	Clobal-in-time solutions for the isothermal Matovich–Pearson equations. Nonlinearity, 2011, 24, 277-292.	0.6	1
166	FLOWS OF VISCOUS COMPRESSIBLE FLUIDS UNDER STRONG STRATIFICATION: INCOMPRESSIBLE LIMITS FOR LONG-RANGE POTENTIAL FORCES. Mathematical Models and Methods in Applied Sciences, 2011, 21, 7-27.	1.7	8
167	Mathematical Models of Incompressible Fluids as Singular Limits of Complete Fluid Systems. Milan Journal of Mathematics, 2010, 78, 523-560.	0.7	5
168	Boundary Behavior of Viscous Fluids: Influence of Wall Roughness and Friction-driven Boundary Conditions. Archive for Rational Mechanics and Analysis, 2010, 197, 117-138.	1.1	39
169	Quasi-Neutral Limit for a Model of Viscous Plasma. Archive for Rational Mechanics and Analysis, 2010, 197, 271-295.	1.1	17
170	Incompressible Limits and Propagation of Acoustic Waves in Large Domains with Boundaries. Communications in Mathematical Physics, 2010, 294, 73-95.	1.0	20
171	Homogenization and singular limits for the complete Navier–Stokes–Fourier system. Journal Des Mathematiques Pures Et Appliquees, 2010, 94, 33-57.	0.8	22
172	ANALYSIS OF A PHASE-FIELD MODEL FOR TWO-PHASE COMPRESSIBLE FLUIDS. Mathematical Models and Methods in Applied Sciences, 2010, 20, 1129-1160.	1.7	87
173	Long time behavior and attractors for energetically insulated fluid systems. Discrete and Continuous Dynamical Systems, 2010, 27, 1587-1609.	0.5	0
174	Low Mach number asymptotics for reacting compressible fluid flows. Discrete and Continuous Dynamical Systems, 2010, 26, 455-480.	0.5	4
175	Mathematical theory of viscous fluids: Retrospective and future perspectives. Discrete and Continuous Dynamical Systems, 2010, 27, 533-555.	0.5	2
176	On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete and Continuous Dynamical Systems - Series B, 2010, 13, 783-798.	0.5	15
177	On the motion of incompressible inhomogeneous Euler-Korteweg fluids. Discrete and Continuous Dynamical Systems - Series S, 2010, 3, 497-515.	0.6	8
178	On compactness of the velocity field in the incompressible limit of the full Navier–Stokes–Fourier system on large domains. Mathematical Methods in the Applied Sciences, 2009, 32, 1269-1286.	1.2	2
179	Existence of solutions to a phase transition model with microscopic movements. Mathematical Methods in the Applied Sciences, 2009, 32, 1345-1369.	1.2	31
180	The Oberbeck–Boussinesq Approximation as a Singular Limit of the Full Navier–Stokes–Fourier System. Journal of Mathematical Fluid Mechanics, 2009, 11, 274-302.	0.4	45

#	Article	IF	CITATIONS
181	A Navier–Stokes–Fourier system for incompressible fluids with temperature dependent material coefficients. Nonlinear Analysis: Real World Applications, 2009, 10, 992-1015.	0.9	74
182	The incompressible limit of the full Navier–Stokes–Fourier system on domains with rough boundaries. Nonlinear Analysis: Real World Applications, 2009, 10, 3203-3229.	0.9	26
183	Low Mach Number Limit for the Navier–Stokes System on Unbounded Domains Under Strong Stratification. Communications in Partial Differential Equations, 2009, 35, 68-88.	1.0	14
184	New Perspectives in Fluid Dynamics: Mathematical Analysis of a Model Proposed by Howard Brenner. , 2009, , 153-179.		17
185	Singular Limits in Thermodynamics of Viscous Fluids. , 2009, , .		290
186	A stabilizing effect of a high-frequency driving force on the motion of a viscous, compressible, and heat conducting fluid. Discrete and Continuous Dynamical Systems - Series S, 2009, 2, 95-111.	0.6	2
187	Small Péclet Number Approximation as a Singular Limit of the Full Navier-Stokes-Fourier System with Radiation. , 2009, , 123-152.		1
188	Layered incompressible fluid flow equations in the limit of low Mach number and strong stratification. Physica D: Nonlinear Phenomena, 2008, 237, 1466-1487.	1.3	3
189	On the Asymptotic Limit of Flows Past a Ribbed Boundary. Journal of Mathematical Fluid Mechanics, 2008, 10, 554-568.	0.4	24
190	On the asymptotic limit of the Navier–Stokes system on domains with rough boundaries. Journal of Differential Equations, 2008, 244, 2890-2908.	1.1	62
191	ON THE INCOMPRESSIBLE LIMIT FOR THE NAVIER–STOKES–FOURIER SYSTEM IN DOMAINS WITH WAVY BOTTOMS. Mathematical Models and Methods in Applied Sciences, 2008, 18, 291-324.	1.7	20
192	Anelastic Approximation as a Singular Limit of the Compressible Navier–Stokes System. Communications in Partial Differential Equations, 2008, 33, 157-176.	1.0	32
193	Influence of wall roughness on the slip behaviour of viscous fluids. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2008, 138, 957-973.	0.8	20
194	On the motion of several rigid bodies in an incompressible non-Newtonian fluid. Nonlinearity, 2008, 21, 1349-1366.	0.6	31
195	On a diffuse interface model for a two-phase flow of compressible viscous fluids. Indiana University Mathematics Journal, 2008, 57, 659-698.	0.4	75
196	Multicomponent reactive flows: Global-in-time existence for large data. Communications on Pure and Applied Analysis, 2008, 7, 1017-1047.	0.4	46
197	Navier's slip and incompressible limits in domains with variable bottoms. Discrete and Continuous Dynamical Systems - Series S, 2008, 1, 427-460.	0.6	19
198	Asymptotic analysis of the full Navier-Stokes-Fourier system: From compressible to incompressible fluid flows. Russian Mathematical Surveys, 2007, 62, 511-533.	0.2	3

#	Article	IF	CITATIONS
199	Non-isothermal Smoluchowski–Poisson equations as a singular limit of the Navier–Stokes–Fourier–Poisson system. Journal Des Mathematiques Pures Et Appliquees, 2007, 88, 325-349.	0.8	17
200	On convergence to equilibria for the Keller–Segel chemotaxis model. Journal of Differential Equations, 2007, 236, 551-569.	1.1	57
201	The Low Mach Number Limit for the Full Navier–Stokes–Fourier System. Archive for Rational Mechanics and Analysis, 2007, 186, 77-107.	1.1	79
202	On the Long-Time Behaviour of Solutions to the Navier–Stokes–Fourier System with a Time-Dependent Driving Force. Journal of Dynamics and Differential Equations, 2007, 19, 685-707.	1.0	19
203	Mathematical theory of compressible, viscous, and heat conducting fluids. Computers and Mathematics With Applications, 2007, 53, 461-490.	1.4	42
204	On the Motion of Several Rigid Bodies in a Viscous Multipolar Fluid. , 2007, , 291-305.		1
205	On the Navier-Stokes equations with temperature-dependent transport coefficients. Differential Equations and Nonlinear Mechanics, 2006, 2006, 1-14.	0.3	42
206	The Equations of Magnetohydrodynamics: On the Interaction Between Matter and Radiation in the Evolution of Gaseous Stars. Communications in Mathematical Physics, 2006, 266, 595-629.	1.0	226
207	Large time behaviour of flows of compressible, viscous, and heat conducting fluids. Mathematical Methods in the Applied Sciences, 2006, 29, 1237-1260.	1.2	17
208	Stability of Flows of Real Monoatomic Gases. Communications in Partial Differential Equations, 2006, 31, 325-348.	1.0	33
209	On a simple model of reacting compressible flows arising in astrophysics. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2005, 135, 1169-1194.	0.8	42
210	A regularizing effect of radiation in the equations of fluid dynamics. Mathematical Methods in the Applied Sciences, 2005, 28, 661-685.	1.2	26
211	Large time behaviour of solutions to Penrose-Fife phase change models. Mathematical Methods in the Applied Sciences, 2005, 28, 2117-2132.	1.2	14
212	Weak Sequential Stability of the Set of Admissible Variational Solutions to the NavierStokesFourier System. SIAM Journal on Mathematical Analysis, 2005, 37, 619-650.	0.9	5
213	On a Class of Physically Admissible Variational Solutions to the Navier-Stokes-Fourier System. Zeitschrift Fur Analysis Und Ihre Anwendung, 2005, 24, 75-101.	0.8	2
214	On the Dynamics of Gaseous Stars. Archive for Rational Mechanics and Analysis, 2004, 174, 221-266.	1.1	68
215	A non-smooth version of the Lojasiewicz–Simon theorem with applications to non-local phase-field systems. Journal of Differential Equations, 2004, 199, 1-21.	1.1	37
216	On the motion of a viscous, compressible, and heat conducting fluid. Indiana University Mathematics Journal, 2004, 53, 1707-1740.	0.4	129

#	Article	IF	CITATIONS
217	Global in time weak solutions for compressible barotropic self-gravitating fluids. Discrete and Continuous Dynamical Systems, 2004, 11, 113-130.	0.5	74
218	On the Long-Time Behaviour of Compressible Fluid Flows Subjected to Highly Oscillating External Forces. Czechoslovak Mathematical Journal, 2003, 53, 757-767.	0.3	0
219	On the motion of rigid bodies in a viscous incompressible fluid. Journal of Evolution Equations, 2003, 3, 419-441.	0.6	66
220	Propagation of oscillations, complete trajectories and attractors for compressible flows. Nonlinear Differential Equations and Applications, 2003, 10, 33-55.	0.4	17
221	On the Motion of Rigid Bodies in a Viscous Compressible Fluid. Archive for Rational Mechanics and Analysis, 2003, 167, 281-308.	1.1	94
222	On the motion of rigid bodies in a viscous incompressible fluid. , 2003, , 419-441.		13
223	Viscous and/or Heat Conducting Compressible Fluids. Handbook of Mathematical Fluid Dynamics, 2002, , 307-371.	0.1	7
224	On the domain dependence of solutions to the compressible Navier-Stokes equations of a barotropic fluid. Mathematical Methods in the Applied Sciences, 2002, 25, 1045-1073.	1.2	61
225	Compressible Navier–Stokes Equations with a Non-Monotone Pressure Law. Journal of Differential Equations, 2002, 184, 97-108.	1.1	96
226	Shape Optimization in Viscous Compressible Fluids. Applied Mathematics and Optimization, 2002, 47, 59-78.	0.8	32
227	On the motion of rigid bodies in a viscous fluid. Applications of Mathematics, 2002, 47, 463-484.	0.9	26
228	Global existence for a quasi-linear evolution equation with a non-convex energy. Transactions of the American Mathematical Society, 2002, 354, 1421-1434.	0.5	4
229	BOUNDED ABSORBING SETS FOR THE NAVIER-STOKES EQUATIONS OF COMPRESSIBLE FLUID. Communications in Partial Differential Equations, 2001, 26, 1133-1144.	1.0	16
230	Long-time stabilization of solutions to a phase-field model with memory. Journal of Evolution Equations, 2001, 1, 69-84.	0.6	44
231	Long-Time Stabilization of Solutions to the Ginzburg-Landau Equations of Superconductivity. Monatshefte Fur Mathematik, 2001, 133, 197-221.	0.5	19
232	Existence globale pour un fluide barotrope autogravitant. Comptes Rendus Mathematique, 2001, 332, 627-632.	0.5	32
233	Long-time convergence of solutions to a phase-field system. Mathematical Methods in the Applied Sciences, 2001, 24, 277-287.	1.2	49
234	Asymptotic Compactness of Global Trajectories Generated by the Navier–Stokes Equations of a Compressible Fluid. Journal of Differential Equations, 2001, 173, 390-409.	1.1	24

#	Article	IF	CITATIONS
235	On Compactness of Solutions to the Navier–Stokes Equations of Compressible Flow. Journal of Differential Equations, 2000, 163, 57-75.	1.1	25
236	On the domain dependence of solutions to the two-phase Stefan problem. Applications of Mathematics, 2000, 45, 131-144.	0.9	4
237	Convergence for Semilinear Degenerate Parabolic Equations in Several Space Dimensions. Journal of Dynamics and Differential Equations, 2000, 12, 647-673.	1.0	74
238	On Integrability up to the boundary of the weak solutions of the navier—stokes equations of compressible flow. Communications in Partial Differential Equations, 2000, 25, 755-767.	1.0	58
239	The zero-velocity limit solutions of the Navier-Stokes equations of compressible fluid revisited. Annali Dell'Universita Di Ferrara, 2000, 46, 209-218.	0.7	6
240	Stabilization of a hybrid system with a nonlinear nonmonotone feedback. ESAIM - Control, Optimisation and Calculus of Variations, 1999, 4, 123-135.	0.7	4
241	Front propagation for degenerate parabolic equations. Nonlinear Analysis: Theory, Methods & Applications, 1999, 35, 735-746.	0.6	5
242	On the Motion of a Viscous Compressible Fluid Driven by a Time-Periodic External Force. Archive for Rational Mechanics and Analysis, 1999, 149, 69-96.	1.1	68
243	Large-time Behaviour of Solutions¶to the Navier-Stokes Equations¶of Compressible Flow. Archive for Rational Mechanics and Analysis, 1999, 150, 77-96.	1.1	90
244	Singular Kernels and Compactness in Nonlinear Conservation Laws. Journal of Differential Equations, 1998, 142, 291-304.	1.1	2
245	On the zero-velocity-limit solutions to the Navier-Stokes equations of compressible flow. Manuscripta Mathematica, 1998, 97, 109-116.	0.3	34
246	Long-time behavior and convergence for semilinear wave equations on â"•N. Journal of Dynamics and Differential Equations, 1997, 9, 133-155.	1.0	11
247	Asymptotic spatial homogeneity of solutions to conservation laws with memory in several space dimensions. Mathematical Methods in the Applied Sciences, 1997, 20, 1459-1468.	1.2	1
248	Asymptotic behaviour and attractors for degenerate parabolic equations on unbounded domains. Nonlinear Analysis: Theory, Methods & Applications, 1996, 26, 1535-1546.	0.6	4
249	Weak solutions to a non-linear hyperbolic system arising in the theory of dielectric liquids. Mathematical Methods in the Applied Sciences, 1995, 18, 1041-1052.	1.2	3
250	Regularization and symmetry breaking for the thermistor problem with the Thomson effect. Meccanica, 1995, 30, 389-396.	1.2	2
251	Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1995, 125, 1051-1062.	0.8	42
252	Attractors for semilinear damped wave equations on 3. Nonlinear Analysis: Theory, Methods & Applications, 1994, 23, 187-195.	0.6	34

#	Article	IF	CITATIONS
253	Finite-dimensional asymptotic behavior of some semilinear damped hyperbolic problems. Journal of Dynamics and Differential Equations, 1994, 6, 23-35.	1.0	14
254	Well posedness for the problem of adiabatic shearing of fluids with discontinuous initial data. Nonlinear Analysis: Theory, Methods & Applications, 1993, 20, 389-394.	0.6	1
255	Strong decay for wave equations with nonlinear nonmonotone damping. Nonlinear Analysis: Theory, Methods & Applications, 1993, 21, 49-63.	0.6	6
256	On the dynamics of semilinear damped wave equations on. Communications in Partial Differential Equations, 1993, 18, 1981-1999.	1.0	5
257	Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent. Communications in Partial Differential Equations, 1993, 18, 1539-1555.	1.0	55
258	A Comparison Theorem for a Nonlinear system Arising in Porous Medium Combustion. Applicable Analysis, 1993, 49, 247-254.	0.6	0
259	Strong asymptotic stability for a beam equation with weak damping. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1993, 123, 365-371.	0.8	2
260	The equations of electrohydrodynamics with highly irregular initial data. IMA Journal of Applied Mathematics, 1993, 51, 111-122.	0.8	1
261	Exponential attractors for non-autonomous systems: Long-time behaviour of vibrating beams. Mathematical Methods in the Applied Sciences, 1992, 15, 287-297.	1.2	12
262	Spatially localized free vibrations for a non-linear string model. Mathematical Methods in the Applied Sciences, 1992, 15, 331-343.	1.2	0
263	Some existence, uniqueness and nonuniqueness theorems for solutions of parabolic equations with discontinuous nonlinearities. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1991, 119, 1-17.	0.8	40
264	Weakly damped quasilinear wave equation: existence of time-periodic solutions. Nonlinear Analysis: Theory, Methods & Applications, 1991, 17, 711-723.	0.6	0
265	A note on uniqueness for parabolic problems with discontinuous nonlinearities. Nonlinear Analysis: Theory, Methods & Applications, 1991, 16, 1053-1056.	0.6	14
266	Forced Vibrations in One-Dimensional Nonlinear Viscoelasticity. Journal of Integral Equations and Applications, 1991, 3, .	0.2	4
267	Time-periodic solutions to quasilinear telegraph equations with large data. Archive for Rational Mechanics and Analysis, 1990, 112, 45-62.	1.1	4
268	Large amplitude solutions to some nonlinear boundary value problems via dual variational methods. Journal of Differential Equations, 1990, 88, 100-112.	1.1	1
269	A note on invariant regions in one-dimensional nonlinear viscoelasticity. Applicable Analysis, 1990, 35, 195-203.	0.6	1
270	A note on invariant regions in one- dimensional nonlinear viscoelasticity. Applicable Analysis, 1990, 35, 195-203.	0.6	0

#	Article	IF	CITATIONS
271	Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations. Applications of Mathematics, 1990, 35, 192-208.	0.9	2
272	Invariant regions associated with quasilinear damped wave equations. Czechoslovak Mathematical Journal, 1990, 40, 612-618.	0.3	1
273	Time periodic solutions to a semilinear beam equation. Nonlinear Analysis: Theory, Methods & Applications, 1988, 12, 279-290.	0.6	25
274	Domain sensitivity in singular limits of compressible viscous fluids. Séminaire Laurent Schwartz — EDP Et Applications, 0, , 1-16.	0.0	0
275	Stationary solutions in thermodynamics of stochastically forced fluids. Mathematische Annalen, 0, , 1.	0.7	0