List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/421270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The DTI Challenge: Toward Standardized Evaluation of Diffusion Tensor Imaging Tractography for Neurosurgery. Journal of Neuroimaging, 2015, 25, 875-882.	2.0	147
2	The spectrum of structural and functional imaging abnormalities in temporal lobe epilepsy. Annals of Neurology, 2016, 80, 142-153.	5.3	116
3	Neuroinflammation-Associated Aspecific Manipulation of Mouse Predator Fear by Toxoplasma gondii. Cell Reports, 2020, 30, 320-334.e6.	6.4	88
4	Direct Visualization and Mapping of the Spatial Course of Fiber Tracts at Microscopic Resolution in the Human Hippocampus. Cerebral Cortex, 2017, 27, bhw010.	2.9	80
5	Lateral impacts correlate with falx cerebri displacement and corpus callosum trauma in sports-related concussions. Biomechanics and Modeling in Mechanobiology, 2019, 18, 631-649.	2.8	67
6	Multimodal image registration and connectivity analysis for integration of connectomic data from microscopy to MRI. Nature Communications, 2019, 10, 5504.	12.8	66
7	Diffusion MRI tractography for improved transcranial MRI-guided focused ultrasound thalamotomy targeting for essential tremor. NeuroImage: Clinical, 2018, 19, 572-580.	2.7	64
8	In vivo <scp>MRI</scp> signatures of hippocampal subfield pathology in intractable epilepsy. Human Brain Mapping, 2016, 37, 1103-1119.	3.6	61
9	Revealing subâ€voxel motions of brain tissue using phaseâ€based amplified MRI (aMRI). Magnetic Resonance in Medicine, 2018, 80, 2549-2559.	3.0	61
10	The separate effects of lipids and proteins on brain MRI contrast revealed through tissue clearing. NeuroImage, 2017, 156, 412-422.	4.2	53
11	Magnetic resonance-guided focused ultrasound capsulotomy for refractory obsessive compulsive disorder: clinical and imaging results from two phase I trials. Molecular Psychiatry, 2020, 25, 1946-1957.	7.9	53
12	Hippocampal segmentation for brains with extensive atrophy using threeâ€dimensional convolutional neural networks. Human Brain Mapping, 2020, 41, 291-308.	3.6	45
13	Magnetic resonance imaging and histology correlation in the neocortex in temporal lobe epilepsy. Annals of Neurology, 2015, 77, 237-250.	5.3	43
14	Investigation of hippocampal substructures in focal temporal lobe epilepsy with and without hippocampal sclerosis at 7T. Journal of Magnetic Resonance Imaging, 2017, 45, 1359-1370.	3.4	43
15	Transcranial MRIâ€guided highâ€intensity focused ultrasound for treatment of essential tremor: A pilot study on the correlation between lesion size, lesion location, thermal dose, and clinical outcome. Journal of Magnetic Resonance Imaging, 2018, 48, 58-65.	3.4	43
16	Improving cardiac MRI convolutional neural network segmentation on small training datasets and dataset shift: A continuous kernel cut approach. Medical Image Analysis, 2020, 61, 101636.	11.6	42
17	RNA-Sequencing Analysis Revealed a Distinct Motor Cortex Transcriptome in Spontaneously Recovered Mice After Stroke. Stroke, 2018, 49, 2191-2199.	2.0	39
18	Image registration of ex-vivo MRI to sparsely sectioned histology of hippocampal and neocortical temporal lobe specimens. Neurolmage, 2013, 83, 770-781.	4.2	36

#	Article	IF	CITATIONS
19	In vivo normative atlas of the hippocampal subfields using multiâ€echo susceptibility imaging at 7 Tesla. Human Brain Mapping, 2014, 35, 3588-3601.	3.6	36
20	Detection of temporal lobe epilepsy using support vector machines in multi-parametric quantitative MR imaging. Computerized Medical Imaging and Graphics, 2015, 41, 14-28.	5.8	35
21	Predicting ¹⁵ O-Water PET cerebral blood flow maps from multi-contrast MRI using a deep convolutional neural network with evaluation of training cohort bias. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 2240-2253.	4.3	30
22	Registration of in-vivo to ex-vivo MRI of surgically resected specimens: A pipeline for histology to in-vivo registration. Journal of Neuroscience Methods, 2015, 241, 53-65.	2.5	29
23	Ontario Neurodegenerative Disease Research Initiative (ONDRI): Structural MRI Methods and Outcome Measures. Frontiers in Neurology, 2020, 11, 847.	2.4	23
24	Quantitative relaxometry and diffusion MRI for lateralization in MTS and non-MTS temporal lobe epilepsy. Epilepsy Research, 2014, 108, 506-516.	1.6	20
25	Comparison of semi-automated scar quantification techniques using high-resolution, 3-dimensional late-gadolinium-enhancement magnetic resonance imaging. International Journal of Cardiovascular Imaging, 2015, 31, 349-357.	1.5	20
26	Longitudinal Changes in Hippocampal Subfield Volume Associated with Collegiate Football. Journal of Neurotrauma, 2019, 36, 2762-2773.	3.4	20
27	Comparison of diffusion MRI and CLARITY fiber orientation estimates in both gray and white matter regions of human and primate brain. NeuroImage, 2021, 228, 117692.	4.2	20
28	Cortical Thickness Estimation in Individuals With Cerebral Small Vessel Disease, Focal Atrophy, and Chronic Stroke Lesions. Frontiers in Neuroscience, 2020, 14, 598868.	2.8	18
29	Longitudinal alteration of cortical thickness and volume in high-impact sports. NeuroImage, 2020, 217, 116864.	4.2	17
30	Deep Bayesian networks for uncertainty estimation and adversarial resistance of white matter hyperintensity segmentation. Human Brain Mapping, 2022, 43, 2089-2108.	3.6	17
31	The Use of Random Forests to Classify Amyloid Brain PET. Clinical Nuclear Medicine, 2019, 44, 784-788.	1.3	15
32	Improved Segmentation of the Intracranial and Ventricular Volumes in Populations with Cerebrovascular Lesions and Atrophy Using 3D CNNs. Neuroinformatics, 2021, 19, 597-618.	2.8	14
33	Automated generation of cerebral blood flow and arterial transit time maps from multiple delay arterial spinâ€labeled <scp>MRI</scp> . Magnetic Resonance in Medicine, 2022, 88, 406-417.	3.0	13
34	Seven-Tesla MRI and neuroimaging biomarkers for Alzheimer's disease. Neurosurgical Focus, 2015, 39, E4.	2.3	12
35	The Use of Random Forests to Identify Brain Regions on Amyloid and FDG PET Associated With MoCA Score. Clinical Nuclear Medicine, 2020, 45, 427-433.	1.3	12
36	Simultaneous FDG-PET/MRI detects hippocampal subfield metabolic differences in AD/MCI. Scientific Reports, 2020, 10, 12064.	3.3	12

#	Article	IF	CITATIONS
37	Correlative Microscopy to Localize and Characterize Iron Deposition in Alzheimer's Disease. Journal of Alzheimer's Disease Reports, 2020, 4, 525-536.	2.2	12
38	Brain structure and function in people recovering from COVID-19 after hospital discharge or self-isolation: a longitudinal observational study protocol. CMAJ Open, 2021, 9, E1114-E1119.	2.4	11
39	Technical and radiographic considerations for magnetic resonance imaging–guided focused ultrasound capsulotomy. Journal of Neurosurgery, 2020, 135, 291-299.	1.6	8
40	Cognitive and Neuroimaging Profiles of Older Adults With Attention Deficit/Hyperactivity Disorder Presenting to a Memory Clinic. Journal of Attention Disorders, 2021, , 108705472110605.	2.6	8
41	MR susceptibility contrast imaging using a 2D simultaneous multi-slice gradient-echo sequence at 7T. PLoS ONE, 2019, 14, e0219705.	2.5	5
42	Neuroradiologic Evaluation of MRI in High-Contact Sports. Frontiers in Neurology, 2021, 12, 701948.	2.4	5
43	Progressive White Matter Injury in Preclinical Dutch Cerebral Amyloid Angiopathy. Annals of Neurology, 2022, 92, 358-363.	5.3	5
44	Assessment of PET & ASL metabolism in the hippocampal subfields of MCI and AD using simultaneous PET-MR. EJNMMI Physics, 2015, 2, A73.	2.7	4
45	Predicting response to psychiatric surgery: a systematic review of neuroimaging findings. Journal of Psychiatry and Neuroscience, 2020, 45, 387-394.	2.4	4
46	Investigating the contribution of white matter hyperintensities and cortical thickness to empathy in neurodegenerative and cerebrovascular diseases. GeroScience, 2022, 44, 1575-1598.	4.6	4
47	Changes in the Cerebello-Thalamo-Cortical Network After Magnetic Resonance-Guided Focused Ultrasound Thalamotomy. Brain Connectivity, 2023, 13, 28-38.	1.7	4
48	Correlation between arterial spin labeling MRI and dynamic FDG on PET-MR in Alzheimer's disease and non-Alzhiemer's disease patients. EJNMMI Physics, 2015, 2, A83.	2.7	3
49	Carotid Atherosclerosis and Cerebral Small Vessel Disease: Preliminary Results from the Canadian Atherosclerosis Imaging Network Project 1. Atherosclerosis Supplements, 2018, 32, 156.	1.2	3
50	Intravenous and Non-invasive Drug Delivery to the Mouse Basal Forebrain Using MRI-guided Focused Ultrasound. Bio-protocol, 2021, 11, e4056.	0.4	3
51	Individual feature maps: a patient-specific analysis tool with applications in temporal lobe epilepsy. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 53-71.	2.8	1
52	Amyloidâ€independent vascular contributions to cortical atrophy and cognition in a multiâ€center mixed cohort with low to severe small vessel disease. Alzheimer's and Dementia, 2021, 17, .	0.8	1
53	Detection of small human cerebral cortical lesions with MRI under different levels of Gaussian smoothing: applications in epilepsy. Proceedings of SPIE, 2010, , .	0.8	0
54	Robust registration of sparsely sectioned histology to ex-vivo MRI of temporal lobe resections. , 2012,		0

#	Article	IF	CITATIONS
55	P.027 Investigation of hippocampal sub-structures in HS and non-HS focal temporal lobe epilepsy at 7T. Canadian Journal of Neurological Sciences, 2016, 43, S28-S28.	0.5	0
56	P1â€311: In Vivo Assessment of Hippocampal Subfield Metabolism, Perfusion and Diffusion Changes in MCI and Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P541.	0.8	0
57	[P3–424]: CORRELATIVE MRI/OPTICAL/ELECTRON MICROSCOPY EVALUATION OF METAL DISTRIBUTION AND OXIDATIVE STATE IN THE ALZHEIMER'S HIPPOCAMPUS. Alzheimer's and Dementia, 2017, 13, P1129.	0.8	0
58	P3â€072: FEASIBILITY OF USING Xâ€RAY FLUORESCENCE IMAGING AND ABSORPTION SPECTROSCOPY TO EVALUATE IRON DISTRIBUTION AND OXIDATIVE STATE IN THE ALZHEIMER'S DISEASE HIPPOCAMPUS. Alzheimer's and Dementia, 2018, 14, P1092.	0.8	0
59	Non-Binary Approaches for Classification of Amyloid Brain PET. , 2019, , .		0
60	Abstract P359: Secondary Thalamic Atrophy Related to Brain Infarction is Associated With Post-Stroke Cognitive Impairment. Stroke, 2021, 52, .	2.0	0
61	Towards a comprehensive 3D mapping of tau progression in early Alzheimer's disease. Brain, 2021, 144, 2565-2567.	7.6	0
62	Serum oxylipins indicate subcortical ischemic vascular disease in patients with clinical stroke. Alzheimer's and Dementia, 2021, 17, .	0.8	0
63	P269. Functional Connectivity Changes Between the sgACC and Meso-Cortico-Limbic Reward Network Following Deep Brain Stimulation Versus Magnetic Resonance-Guided Focused Ultrasound Capsulotomy in Depression. Biological Psychiatry, 2022, 91, S196.	1.3	0