Tao Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4212401/publications.pdf

Version: 2024-02-01

840776 940533 16 582 11 16 citations h-index g-index papers 16 16 16 810 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Dehydroquinate Synthase Directly Binds to Streptomycin and Regulates Susceptibility of Mycobacterium bovis to Streptomycin in a Non-canonical Mode. Frontiers in Microbiology, 2022, 13, 818881.	3.5	1
2	Biochemical and structural characterization of the BioZ enzyme engaged in bacterial biotin synthesis pathway. Nature Communications, 2021, 12, 2056.	12.8	9
3	Cyclic Dimeric Guanosine Monophosphate: Activation and Inhibition of Innate Immune Response. Journal of Innate Immunity, 2019, 11, 242-248.	3.8	13
4	Mechanistic insights into transferable polymyxin resistance among gut bacteria. Journal of Biological Chemistry, 2018, 293, 4350-4365.	3.4	68
5	Cyclic di-GMP integrates functionally divergent transcription factors into a regulation pathway for antioxidant defense. Nucleic Acids Research, 2018, 46, 7270-7283.	14.5	17
6	Uncovering Drug Mechanism of Action by Proteome Wide- Identification of Drug-Binding Proteins. Medicinal Chemistry, 2017, 13, 526-535.	1.5	2
7	NapM, a new nucleoidâ€associated protein, broadly regulates gene expression and affects mycobacterial resistance to antiâ€tuberculosis drugs. Molecular Microbiology, 2016, 101, 167-181.	2.5	25
8	Molecule Targeting Glucosyltransferase Inhibits Streptococcus mutans Biofilm Formation and Virulence. Antimicrobial Agents and Chemotherapy, 2016, 60, 126-135.	3.2	117
9	Uncovering New Pathogen–Host Protein–Protein Interactions by Pairwise Structure Similarity. PLoS ONE, 2016, 11, e0147612.	2.5	13
10	Cyclic diguanylate monophosphate directly binds to human siderocalin and inhibits its antibacterial activity. Nature Communications, 2015, 6, 8330.	12.8	48
11	Improved understanding of pathogenesis from protein interactions in <i>Mycobacteriumtuberculosis</i> . Expert Review of Proteomics, 2014, 11, 745-755.	3.0	6
12	A TetR-like regulator broadly affects the expressions of diverse genes in Mycobacterium smegmatis. Nucleic Acids Research, 2012, 40, 1009-1020.	14.5	57
13	A Genome-Wide Regulator–DNA Interaction Network in the Human Pathogen Mycobacterium tuberculosis H37Rv. Journal of Proteome Research, 2012, 11, 4682-4692.	3.7	19
14	C-di-GMP signaling and implications for pathogenesis of Mycobacterium tuberculosis. Science Bulletin, 2012, 57, 4387-4393.	1.7	4
15	Global Proteinâ^Protein Interaction Network in the Human Pathogen <i>Mycobacterium tuberculosis</i> H37Rv. Journal of Proteome Research, 2010, 9, 6665-6677.	3.7	104
16	Uncovering new signaling proteins and potential drug targets through the interactome analysis of Mycobacterium tuberculosis. BMC Genomics, 2009, 10, 118.	2.8	79